Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Subspaces of small codimension of finite-dimensional Banach spaces

Authors: Alain Pajor and Nicole Tomczak-Jaegermann
Journal: Proc. Amer. Math. Soc. 97 (1986), 637-642
MSC: Primary 46B20; Secondary 41A46, 47B10
MathSciNet review: 845980
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a finite-dimensional Banach space $ E$ and a Euclidean norm on $ E$, we study relations between the norm and the Euclidean norm on subspaces of $ E$ of small codimension. Then for an operator taking values in a Hilbert space, we deduce an inequality for entropy numbers of the operator and its dual.

References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain and V. D. Milman, Sections euclidiennes et volume des corps convexes symétriques, C.R. Acad. Sci. Paris Sér. A I Math. 300 (1985), 435-438. MR 794017 (86i:52006)
  • [2] B. Carl, Entropy numbers, $ s$-numbers and eigenvalue problem, J. Funct. Anal. 41 (1981), 290-306. MR 619953 (82m:47015)
  • [3] -, On Gelfand, Kolmogonov and entropy numbers of operators acting between special Banach spaces (to appear).
  • [4] S. Dilworth and S. Szarek, The cotype constant and almost Euclidean decomposition of finite dimensional normed spaces (to appear). MR 815604 (87e:46020)
  • [5] R. J. Dudley, The size of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1 (1967), 290-330. MR 0220340 (36:3405)
  • [6] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimensions of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. MR 0445274 (56:3618)
  • [7] E. D. Gluskin, Norms of random matrices and diameters of finite dimensional sets, Mat. Sb. 120 (1983), 180-189. (Russian) MR 687610 (84g:41021)
  • [8] Y. Gordon, H. König and C. Schütt, Geometric and probabilistic estimates for entropy and approximation numbers of operators, J. Approx. Theory (to appear). MR 879670 (88c:47035)
  • [9] T. Kühn, $ \gamma $-radonifying operators and entropy ideals, Math. Nachr. 107(1982), 53-58. MR 695735 (84d:47026)
  • [10] V. D. Milman, Random subspaces of proportional dimension of finite dimensional normed spaces; approach through the isoperimetric inequality, Séminaire d'Analyse Fonctionelle 84/85, Université Paris VI et VII, Paris. MR 941807 (89e:46018)
  • [11] V. D. Milman and G. Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. (to appear). MR 852475 (88c:46022)
  • [12] A. Pietsch, Operator ideals, North-Holland, Berlin, 1978. MR 582655 (81j:47001)
  • [13] V. N. Sudakov, Gaussian random processes and measures of solid angles in Hilbert space, Soviet Math. Dokl. 12 (1971), 412-415. MR 0288832 (44:6027)
  • [14] A. Pajor and N. Tomczak-Jaegermann, Nombres de Gelfand et sections euclidiennes de grande dimension, Séminaire d'Analyse Fonctionelle 84/85, Université Paris VI et VII, Paris.
  • [15] J. Bourgain and V. D. Milman, On Mahler's conjecture on the volume of a convex symmetric body and its polar, Preprint, I.H.E.S.
  • [16] W. J. Davis, V. D. Milman and N. Tomczak-Jaegermann, The distance between certain $ n$-dimensional spaces, Israel J. Math. 39 (1981), 1-15. MR 617286 (82h:46024)
  • [17] T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155-171. MR 571251 (81f:46024)
  • [18] V. D. Milman, Volume approach and iteration procedures in local theory of normed spaces, Missouri Conf. 1984. MR 827765 (87j:46037a)
  • [19] V. D. Milman and G. Pisier, Gaussian processes and mixed volumes, Ann. Probab. (to appear). MR 877605 (88d:60117)
  • [20] A. Yu. Garnaev and E. D. Gluskin, On diameters of the Euclidean sphere, Dokl. Akad. Nauk SSSR 277 (1984), 1048-1052. MR 759962 (85m:46023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 41A46, 47B10

Retrieve articles in all journals with MSC: 46B20, 41A46, 47B10

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society