A counterexample to a result concerning controlled approximation

Author:
Rong Qing Jia

Journal:
Proc. Amer. Math. Soc. **97** (1986), 647-654

MSC:
Primary 41A15; Secondary 41A45

MathSciNet review:
845982

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A result of Strang and Fix states that if the order of controlled approximation from a collection of locally supported elements is , then there is a linear combination of those elements and their translates such that any polynomial of degree less than can be reproduced by and its translates. This paper gives a counterexample to their result.

**[BH]**C. de Boor and K. Höllig,*𝐵-splines from parallelepipeds*, J. Analyse Math.**42**(1982/83), 99–115. MR**729403**, 10.1007/BF02786872**[C]**R. Courant,*Variational methods for the solution of problems of equilibrium and vibrations*, Bull. Amer. Math. Soc.**49**(1943), 1–23. MR**0007838**, 10.1090/S0002-9904-1943-07818-4**[DM]**Wolfgang Dahmen and Charles A. Micchelli,*On the approximation order from certain multivariate spline spaces*, J. Austral. Math. Soc. Ser. B**26**(1984), no. 2, 233–246. MR**765640**, 10.1017/S033427000000446X**[FS]**George Fix and Gilbert Strang,*Fourier analysis of the finite element method in Ritz-Galerkin theory.*, Studies in Appl. Math.**48**(1969), 265–273. MR**0258297****[S]**Gilbert Strang,*The finite element method and approximation theory*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR**0287723****[SF]**G. Strang and G. Fix,*A Fourier analysis of the finite element variational method*, Constructive Aspects of Functional Analysis (G. Geymonat, ed.) (C.I.M.E. II, Ciclo Erice, 1971), 1973, pp. 793-840.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A15,
41A45

Retrieve articles in all journals with MSC: 41A15, 41A45

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1986-0845982-1

Article copyright:
© Copyright 1986
American Mathematical Society