Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Average radial limits in weighted Hardy spaces

Authors: Alec Matheson and David C. Ullrich
Journal: Proc. Amer. Math. Soc. 97 (1986), 691-694
MSC: Primary 30D40; Secondary 30D50
MathSciNet review: 845989
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted Hardy spaces are defined in the unit disc by specifying the rate of growth of $ p$th means near the boundary. Although a function in one of these spaces need have no radial limits, it is shown that in certain of these spaces "average radial limits" exist over an interval on the boundary. An integral representation in terms of these average radial limits is given, with an application to the question of existence of (pointwise) radial limits.

References [Enhancements On Off] (What's this?)

  • [D] P. L. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [HL] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 8 (1937), 161-171. MR 0006581 (4:8d)
  • [L] L. H. Loomis, The converse of the Fatou theorem for positive harmonic functions, Trans. Amer. Math. Soc. 53 (1943), 239. MR 0007832 (4:199d)
  • [M] A. Matheson, A multiplier theorem for analytic functions of slow mean growth, Proc. Amer. Math. Soc. 77 (1979), 53-57. MR 539630 (80j:30048)
  • [U] D. C. Ullrich, Radial limits of Bloch functions in the unit disc, Bull. London Math. Soc. 18 (1986). MR 838805 (87k:30059)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D40, 30D50

Retrieve articles in all journals with MSC: 30D40, 30D50

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society