SPURIOUS BROWNIAN MOTIONS

SÁNDOR CSÖRGŐ

Abstract. Spurious Brownian motions are characterized in \mathbb{R}^d, $d \geq 2$.

Let $W = \{W(t) = (W_1(t), \ldots, W_d(t)), t \geq 0\}$ be an \mathbb{R}^d-valued mean-zero Gaussian process such that all projections $Y_\lambda(t) = \sum_{j=1}^d \lambda_j W_j(t)$ behave as if W were standard Brownian motion in \mathbb{R}^d, i.e., $EY_\lambda(s)Y_\lambda(t) = \min(s,t)\sum_{j=1}^d \lambda_j^2$. Following Hardin [1], we call W a spurious Brownian motion if it is not a standard Brownian motion in \mathbb{R}^d. He showed by an example that such a process exists in \mathbb{R}^2.

Let $S(s,t) = (\sigma_{jk}(s,t))$ denote the covariance matrix function of W: $\sigma_{jk}(s,t) = EW_j(s)W_k(t)$, $j, k = 1, \ldots, d$. Necessarily, $\sigma_{jj}(s,t) = \min(s,t)$ for each $j = 1, \ldots, d$. Hence the identity $EY_\lambda(s)Y_\lambda(t) = \sum_{j,k=1}^d \lambda_j \lambda_k \sigma_{jk}(s,t) = \min(s,t)\sum_{j=1}^d \lambda_j^2$ is equivalent to the identity

$$\sum_{j,k=1, j \neq k}^d \lambda_j \lambda_k \sigma_{jk}(s,t) = 0.$$

This holds for any vector $\lambda = (\lambda_1, \ldots, \lambda_d)$ if and only if $\sigma_{jk}(s,t) = -\sigma_{kj}(s,t)$ for all $j, k = 1, \ldots, d$; $j \neq k$. Thus W is a spurious Brownian motion if and only if $S(s,t)$ is skew-symmetric and not diagonal.

Hardin’s example in \mathbb{R}^2 is an example for such a covariance matrix with $\sigma_{12}(s,t) = 3^{-1}(\min(2s,t) - \min(s,2t))$. However, for any choice of the functions $\sigma_{jk}(s,t)$, $k = j + 1, \ldots, d$; $j = 1, \ldots, d$, such that $|\sigma_{jk}(s,t)| \leq (st)^{1/2}$, $\sigma_{j,j}(s,t) + \sigma_{jk}(t,s) = 0$, and that $\sigma_{jk}(s,t) \neq 0$ for at least one pair (j, k), there is a spurious Brownian motion in \mathbb{R}^d, provided that for any integer $m \geq 2$, any $t_1, \ldots, t_m \geq 0$, and any real numbers λ_{ij}, $i = 1, \ldots, d$; $l = 1, \ldots, m$, we have

$$\sum_{i,j=1}^m \left(\min(t_i,t_j) \sum_{j=1}^d \lambda_{ji}\lambda_{jl} + \sum_{j=1}^{d-1} \sum_{k=j+1}^d \sigma_{jk}(t_i,t_j)(\lambda_{ji}\lambda_{kl} - \lambda_{jl}\lambda_{ki}) \right) \geq 0.$$

These conditions are necessary and sufficient for the existence of a mean-zero stochastic process $X = \{X(t) = (X_1(t), \ldots, X_d(t)), t \geq 0\}$ that has covariance matrix function defined as the skew-symmetric matrix corresponding to the functions $\sigma_{jk}(s,t)$, $k = j + 1, \ldots, d$; $j = 1, \ldots, d$, and having diagonal $\sigma_{jj}(s,t) = \min(s,t)$,

Received by the editors May 3, 1985 and, in revised form, August 15, 1985.

Work done while the author was a Visiting Professor at the Department of Mathematics, University of California at San Diego and at the Department of Statistics, Stanford University.

1980 Mathematics Subject Classification. Primary 60G15, 60J75.

Key words and phrases. Brownian motion, projection.

\footnote{1986 American Mathematical Society 0002-9939/86 $1.00 + .25 per page}
The projections of X already behave as if X were a standard Brownian motion in R^d, though X is not necessarily Gaussian. If X is Gaussian, and such an X exists, then it is necessarily a spurious Brownian motion in R^d.

References

Bolyai Institute, Szeged University, 6720 Szeged, Hungary