U-EMBEDDED SUBSETS OF NORMED LINEAR SPACES
RONNIE LEVY AND M. D. RICE

ABSTRACT. A subset S of a metric space X is U-embedded in X if every uniformly continuous function $f: S \to R$ extends to a uniformly continuous function $F: X \to R$. Thus U-embedding is the uniform analogue of C-embedding. The Tietze extension theorem tells us exactly which subsets of metric spaces are C-embedded. The uniform analogue would tell us exactly which subsets of metric spaces are U-embedded. In this paper, a characterization of U-embedded subsets of the Euclidean plane (or any normed linear space) is given.

A subset S of a uniform space X is U-embedded in X if every real-valued uniformly continuous function $f: S \to R$ extends to a uniformly continuous function $F: X \to R$. Thus, U-embedding is the uniform analogue of C-embedding in topological spaces. One consequence of the Tietze extension theorem is that a subset of a metric space is C-embedded if and only if it is closed. Unlike the topological situation, a characterization of U-embedded subsets of metric spaces seems quite complicated. In this paper, we characterize those subsets of normed linear spaces which are U-embedded. As is usual in such situations, it is the convexity which will help us.

1. Preliminary definitions and results. Suppose that (X, d) is a metric space. If $a, b \in X$, and $\varepsilon > 0$, then we say that a and b are ε-linked by n links in X if there exists $a = x_0, x_1, \ldots, x_n = b \in X$ such that $d(x_{k-1}, x_k) \leq \varepsilon$ for $k = 1, 2, \ldots, n$. The finite sequence $a = x_0, \ldots, x_n = b$ is called an ε-chain from a to b. If there exists an n such that a and b are ε-linked by n links in X, we say that a and b are ε-linked in X. A metric space is uniformly connected if it is not the union of two nonempty subsets which are a positive distance apart. Clearly, every connected metric space is uniformly connected. It is not difficult to see that X is uniformly connected if and only if for each $\varepsilon > 0$ and for each a and b in X, a and b are ε-linked in X.

Suppose (X, d) is a metric space and S is a subset such that every two elements of S are ε-linked in S, where ε is a positive number. Define

$$d_\varepsilon^S(a, b) = \inf \left\{ \sum_{i=1}^{m} d(z_{i-1}, z_i) : a = z_0, \ldots, z_m = b \text{ is an } \varepsilon\text{-chain in } S \right\}$$

and let

$$m_\varepsilon^S(a, b) = \min\{m : \text{there exists an } \varepsilon\text{-chain in } S \text{ from } a \text{ to } b \text{ having } m \text{ links}\}.$$

Then $d_\varepsilon^S(a, b)$ measures the shortest distance one has to travel between a and b given that each step taken is in S and each step is at most ε units long. On the
other hand, $m_{e}^{S}(a,b)$ gives the fewest number of steps of length at most ε one must take to get from a to b provided that each step is in S. Fairly simple examples show that it is possible to have the sum of the distances along every ε-chain from a to b having $m_{e}^{S}(a,b)$ links be bounded away from $d_{e}^{S}(a,b)$. Now let

$$r_{e}^{S} = \sup\{d_{e}^{S}(a,b)/d(a,b) : a,b \in S, a \neq b\}$$

and let

$$r_{e}^{S} = \sup\{m_{e}^{S}(a,b)/m_{e}^{X}(a,b) : a,b \in S, a \neq b\}.$$

When the subspace S is clear from the context, we omit the superscript S in r_{e} and r_{e}^{S}.

1.1. **PROPOSITION.** Suppose (X,d) is a metric space and S is a subspace of X. Then $r_{e} \leq 4r_{e} + 2$. Therefore, if r_{e} is finite, then r_{e} is finite.

PROOF. Suppose a and b are in S. Given $\delta > 0$, choose an ε-chain $o = z_{0}, z_{1}, \ldots, z_{N} = b$ from a to b such that

$$A = \sum_{i=1}^{N} d(z_{i-1}, z_{i}) \leq d_{e}^{S}(a,b) + \delta$$

where N is the smallest integer for which there exists such an ε-chain. Then

$$(*) \ d(z_{2k-2}, z_{2k}) > \varepsilon \quad \text{for} \quad k = 1, \ldots, \lfloor N/2 \rfloor,$$

because if this inequality did not hold, we could get an ε-chain having fewer links and the corresponding ε-chain would give a sum of distances not exceeding A. From $(*)$, we get $A \geq \lfloor N/2 \rfloor \varepsilon / 2$, so

$$[N/2] \varepsilon / 2 \leq d_{e}^{S}(a,b) + \delta.$$

Set $m = m_{e}^{S}(a,b)$. By the choice of N and the definition of $m_{e}^{S}(a,b)$, $m \leq N$. Repeated applications of the triangle inequality give $d(a,b) \leq \varepsilon m_{e}^{X}(a,b)$. Then we get

$$m_{e}^{S}(a,b)/m_{e}^{X}(a,b) = \varepsilon m_{e}^{S}(a,b)/\varepsilon m_{e}^{X}(a,b) \leq \varepsilon m_{e}^{S}(a,b)/d(a,b) = \varepsilon m/d(a,b) \leq N \varepsilon / d(a,b),$$

so

$$m_{e}^{S}(a,b)/m_{e}^{X}(a,b) \leq N \varepsilon / d(a,b) \leq [4(d_{e}^{S}(a,b) + \delta) + 2\varepsilon] / d(a,b) = 4d_{e}^{S}(a,b)/d(a,b) + (4\varepsilon + 2\delta) / d(a,b).$$

If $d(a,b) \geq \varepsilon$, then $m_{e}^{S}(a,b)/m_{e}^{X}(a,b) \leq 4r_{e} + (4\delta + 2\varepsilon) / \varepsilon = 4r_{e} + 2 + (4\delta / \varepsilon)$. On the other hand, if $d(a,b) < \varepsilon$, then $m_{e}^{S}(a,b) = m_{e}^{X}(a,b) = 1$ and $d_{e}^{S}(a,b) = d(a,b)$, so $m_{e}^{S}(a,b)/m_{e}^{X}(a,b) = 1 = d_{e}^{S}(a,b)/d(a,b)$. Therefore, $r_{e} \leq 4r_{e} + 2 + 4\delta / \varepsilon$ for each $\delta > 0$, so $r_{e} \leq 4r_{e} + 2$.

If (X,d) is a metric space and $f : X \to R$ is a function, then f is **Lipschitz for large distances** if for each $\varepsilon > 0$, there exists a constant K (which will in general depend upon ε) such that $d(x,y) \geq \varepsilon$ implies that $|f(x) - f(y)| \leq K d(x,y)$. If F is a family of functions from X to R, then F is said to be jointly **Lipschitz for large distances** if for each $\varepsilon > 0$ there exists a constant K (depending upon ε) such that if $d(x,y) \geq \varepsilon$ and $f \in F$, then $|f(x) - f(y)| \leq K d(x,y)$. The phrase “$(X,d)$ is a normed linear space” will be used to mean that d is the metric induced by the norm on the normed linear space X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
1.2. LEMMA [LR1]. If \((X,d)\) is a normed linear space and \(S\) is a subset of \(X\), then \(S\) is \(U\)-embedded in \(X\) if and only if each uniformly continuous function \(f : S \to R\) is Lipschitz for large distances.

1.3. LEMMA [LR2]. If \((X,d)\) is a normed linear space and \(S\) is a uniformly connected subset of \(X\), then \(S\) is \(U\)-embedded in \(X\) if and only if each equi-uniformly-continuous family \(F\) of functions from \(S\) to \(R\) is jointly Lipschitz for large distances.

2. The uniformly connected case. In this section, we give a characterization of those uniformly connected subsets of normed linear spaces which are \(U\)-embedded. In the next section we show how to modify the characterization for the case where the subset \(S\) is not assumed to be uniformly connected.

2.1. PROPOSITION. Suppose \((X,d)\) is a normed linear space, and suppose that \(S\) is a uniformly connected \(U\)-embedded subset of \(X\). Then \(r_\varepsilon\) is finite for each \(\varepsilon > 0\).

PROOF. Assume \(r_\varepsilon = +\infty\) for some \(\varepsilon > 0\). Then there exist sequences \((x_k)\) and \((y_k)\) of points of \(S\) such that \(x_k \neq y_k\) and \(d^S_\varepsilon(x_k,y_k) \geq kd(x_k,y_k)\) for \(k = 1,2,\ldots\). Since \(d(x,y) \leq \varepsilon\) implies that \(d^S_\varepsilon(x,y) = d(x,y)\), the choice of the \(x_k\)'s and \(y_k\)'s gives us that \(d(x_k,y_k) > \varepsilon\) for \(k \geq 2\). For \(k = 1,2,\ldots\), define \(g_k : S \to R\) by \(g_k(x) = d^S_\varepsilon(x,y_k)\). We claim that the family \(\{g_k : k = 1,2,\ldots\}\) is equi-uniformly continuous. Choose \(\eta > 0\) and let \(\delta = \min\{\eta,\varepsilon\}\). Suppose \(x,y \in S\) and \(d(x,y) < \delta\). Then \(d(x,y) < \varepsilon\). Given \(\rho > 0\), choose \(\varepsilon\)-chains \(y = y_0, y_1, \ldots, y_L(k) = y_k\) and \(x = x_0, x_1, \ldots, x_M(k) = y_k\) such that

\[
\sum_{i=1}^{L(k)} d(y_{i-1}, y_i) < d^S_\varepsilon(y,y_k) + \rho
\]

and

\[
\sum_{j=1}^{M(k)} d(x_{j-1}, x_j) < d^S_\varepsilon(x,y_k) + \rho.
\]

Then

\[
d^S_\varepsilon(x,y_k) \leq d(x,y) + \sum_{i=1}^{L(k)} d(y_{i-1}, y_i) < d(x,y) + d^S_\varepsilon(y,y_k) + \rho.
\]

Therefore,

\[
dx^S_\varepsilon(x,y_k) < d(x,y) < \eta.
\]

Similarly, one shows that

\[
d^S_\varepsilon(y,y_k) - d^S_\varepsilon(x,y_k) < d(x,y) < \eta.
\]

Therefore, \(|g_k(x) - g_k(y)| \leq \eta\). This proves the claim. However, \(|g_k(x_k) - g_k(y_k)| = d^S_\varepsilon(x_k,y_k) \geq kd(x_k,y_k), k = 1,2,\ldots\). Since \(d(x_k,y_k) > \varepsilon\) for \(k \geq 2\), this violates 1.3.

2.2. PROPOSITION. Suppose that \(S\) is a uniformly connected subset of a normed linear space \((X,d)\). If \(r_\varepsilon\) is finite for each positive \(\varepsilon\), then \(S\) is \(U\)-embedded in \(X\).

PROOF. Suppose \(f : S \to R\) is uniformly continuous. Suppose \(\varepsilon > 0\). We must find a constant \(K_\varepsilon\) such that \(d(x,y) \geq \varepsilon\) implies that \(|f(x) - f(y)| < K_\varepsilon d(x,y)|\).
Choose $\delta > 0$ such that $d(x, y) < \delta$ implies that $|f(x) - f(y)| < 1$. Assume $d(x, y) \geq \varepsilon$. Let $m = m_\delta(x, y)$ and let $x = x_0, x_1, \ldots, x_m = y$ be a δ-chain in S. Then if we let $K_\varepsilon = r_\varepsilon[(\varepsilon + \delta)/\varepsilon \delta]$, we get

$$|f(x) - f(y)| \leq \sum_{i=1}^{m} |f(x_{i-1}) - f(x_i)|$$

$$\leq m = m_\delta(x, y)(m/m_\delta(x, y))$$

$$\leq r_\varepsilon[(d(x, y)/\delta) + 1] \quad \text{(because } m_\delta(x, y) = [(d(x, y)/\delta) + 1])$$

$$\leq r_\varepsilon\{d(x, y) + (\delta/\varepsilon)\varepsilon)/\delta$$

$$\leq r_\varepsilon\{(\varepsilon d(x, y) + \delta d(x, y))/\varepsilon \delta\} \quad \text{(since } \varepsilon \leq d(x, y))$$

$$= K_\varepsilon d(x, y).$$

Therefore, f is Lipschitz for large distances.

Combining 1.1 with the preceding two propositions gives the following theorem:

2.3. THEOREM. Suppose that S is a uniformly connected subset of the normed linear space X. Then the following are equivalent:

(i) \mathcal{r}_ε is finite for each $\varepsilon > 0$.

(ii) \mathcal{r}_ε is finite for each $\varepsilon > 0$.

(iii) S is U-embedded in X.

3. The general case. In this section, we give a characterization of those subsets of normed linear spaces which are U-embedded. The characterization will use the characterization given in §2 for the case where the subspace is uniformly connected.

3.1. PROPOSITION. Suppose S is a U-embedded subset of the normed linear space (X, d). Then for each $\varepsilon > 0$ there exists a compact subset F of X, which may be taken to be the union of finitely many line segments, such that

(i) every two elements of $S \cup F$ are ε-linked in $S \cup F$,

(ii) $\mathcal{r}_\varepsilon^{S \cup F}$, and therefore $\mathcal{r}_\varepsilon^{S \cup F}$, is finite.

PROOF. For each $p \in S$, define $C_p = \{x \in S: x$ and p are $\varepsilon/3$-linked in $S\}$. If $C_p \neq C_q$, then $d(C_p, C_q) \geq \varepsilon/3$, so $\mathcal{C} = \{C_p: p \in S\}$ is a uniformly discrete family of nonempty subsets of X whose union is the U-embedded set S. Therefore, \mathcal{C} is finite. (See [LR$_1$].) Write $\mathcal{C} = \{D_0, D_1, \ldots, D_N\}$ and for each $k = 0, 1, \ldots, N$ choose $p_k \in D_k$. For $k = 1, 2, \ldots, N$, let F_k be the line segment from p_{k-1} to p_k and let $F = \bigcup_{k=1}^{N} F_k$. With this definition, condition (i) is clearly satisfied. Now let $\hat{S} = \{p \in X: d(p, S \cup F) \leq \varepsilon/3\}$. It is easy to see that \hat{S} is uniformly connected.

We claim that every uniformly continuous function $g: \hat{S} \to R$ which is identically zero on S is bounded. It will then follow from [LR$_1$] that \hat{S} is U-embedded in X. So assume $g: \hat{S} \to R$ is uniformly continuous and identically zero on S. Since F is compact, it follows that the restriction of g to $S \cup F$ is bounded. Let K be an upper bound for the absolute value of this restriction. Now let $\delta > 0$ be such that $x, y \in S \cup F$, $d(x, y) < \delta$ imply $|g(x) - g(y)| \leq 1$. Given a point x of \hat{S}, there exists a point p of $S \cup F$ such that the segment from x to p is contained in \hat{S} and has length at most $\varepsilon/3$. Then $|g(x)| \leq B + K$, where $B = [(\varepsilon/3\delta) + 1]$. Therefore, \hat{S} is U-embedded in X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
It follows from 2.3 that \(r_{\varepsilon}^{S_\beta} \) is finite. We will show that this implies that \(r_{\varepsilon}^{S \cup F} \) is finite. Suppose \(a, b \in S \cup F \). Given \(\rho > 0 \), choose an \(\varepsilon/3 \)-chain \(a = a_0, a_1, \ldots, a_M = b \) in \(S \) such that

\[
A = \sum_{i=1}^{M} d(a_{i-1}, a_i) < d_{\varepsilon/3}^{S}(a, b) + \rho.
\]

We may assume without loss of generality that this \(\varepsilon/3 \) chain is minimal in the sense that \(d(a_0, a_2) > \varepsilon/3, d(a_2, a_4) > \varepsilon/3, \ldots \). (If this is not the case, inductively choose the elements of the chain so that the resulting chain is minimal and \((\#)\) will still hold.) Then at least half of the distances \(d(a_{i-1}, a_i) \) are at least \(\varepsilon/6 \), so

\[
A \geq (\varepsilon/6)[M/2], \quad \text{that is,} \quad M \leq (12A/\varepsilon) + 2.
\]

For each \(k = 1, 2, \ldots, M - 1 \), choose \(x_k \in S \cup F \) such that \(d(x_k, a_k) < \varepsilon/3 \). Then if \(x_0 = a \) and \(x_M = b \), one gets that \(d(x_{k-1}, x_k) \leq d(x_{k-1}, a_{k-1}) + d(a_{k-1}, a_k) + d(a_k, x_k) \leq d(a_{k-1}, a_k) + 2\varepsilon/3 \leq \varepsilon/3 + 2\varepsilon/3 = \varepsilon \), so \(a = x_0, x_1, \ldots, x_M = b \) is an \(\varepsilon \)-chain in \(S \cup F \). Furthermore,

\[
\sum_{i=1}^{M} d(x_{i-1}, x_i) \leq \sum_{i=1}^{M} d(a_{i-1}, a_i) + 2M\varepsilon/3.
\]

Therefore, using \((*)\) we get \(\sum_{i=1}^{M} d(x_{i-1}, x_i) \leq A + (2\varepsilon/3)[(12A/\varepsilon) + 2] = 9A + (4\varepsilon/3) \leq 9d_{\varepsilon/3}^{S}(a, b) + [9\rho + (4\varepsilon/3)] \). Therefore, \(d_{\varepsilon}^{S \cup F}(a, b) \leq 9d_{\varepsilon/3}^{S}(a, b) + (4\varepsilon/3) \). Hence, \(r_{\varepsilon}^{S \cup F} \leq 9r_{\varepsilon/3}^{S} + (4\varepsilon/3) \).

3.2. PROPOSITION. Suppose \(S \) is a subset of a normed linear space \(X \). Suppose that for each \(\varepsilon > 0 \) there exists a compact set \(F \) such that

(i) every two elements of \(S \cup F \) are \(\varepsilon \)-linked in \(S \cup F \),

(ii) \(r_{\varepsilon}^{S \cup F} \) is finite.

Then \(S \) is \(U \)-embedded in \(X \).

PROOF. Suppose \(f : S \to R \) is uniformly continuous. By a theorem of Isbell [I], there exists an \(\varepsilon > 0 \) such that \(f \) can be extended to a uniformly continuous function \(f_1 : S_\varepsilon \to R \), where \(S_\varepsilon = \{ x \in X : d(x, S) \leq \varepsilon \} \). Choose a positive \(\delta < \varepsilon \) such that \(x, y \in S_\varepsilon \) and \(d(x, y) < \delta \) imply that \(|f_1(x) - f_1(y)| < 1 \). Let \(F \) be the compact set given by the hypothesis corresponding to \(\delta \). By [LR1], \(f_1 \) can be extended to a uniformly continuous function \(\hat{f} : S_\varepsilon \cup F \to R \). We claim that there exists a constant \(C \) such that if \(x \) and \(y \) are elements of \(S \cup F \) satisfying \(d(x, y) \leq \delta \), then \(|\hat{f}(x) - \hat{f}(y)| \leq C \). Let \(M \) be a constant such that \(|f(x)| < M \) for all \(x \in F \). Suppose \(x, y \in S \cup F \) and \(d(x, y) < \delta \). If \(\{ x, y \} \subseteq F \), then \(|f(x) - f(y)| \leq 2M \). If \(\{ x, y \} \subseteq S \), then \(|f(x) - f(y)| < 1 \). If \(x \in S, y \in F \), then \(y \in S_\varepsilon \) (because \(d(x, y) < \varepsilon \)) so again we have \(|f(x) - f(y)| < 1 \). Therefore, we may choose \(C = 2M + 1 \).

Now assume \(d(x, y) \geq \varepsilon \), where \(x \) and \(y \) are points of \(S \cup F \). Let \(m = m_{\varepsilon}^{S \cup F}(x, y) \) and let \(x = x_0, x_1, \ldots, x_m = y \) be a \(\delta \)-chain in \(S \cup F \). Then

\[
|f(x) - f(y)| \leq \sum_{i=1}^{m} |f(x_{i-1}) - f(x_i)| \leq mC
\]

\[
\leq Cr_{\varepsilon}^{S \cup F}[(\varepsilon + \delta)/\varepsilon\delta]d(x, y) = Ke d(x, y),
\]
where $K_\varepsilon = C r_{\delta}^{S \cup F}(\varepsilon + \delta)/\varepsilon \delta$. Therefore, f is Lipschitz for large distances.

Combining 3.1 and 3.2 gives the following theorem:

3.3. **THEOREM.** Suppose S is a subset of the normed linear space (X, d). Then the following are equivalent:

(i) S is U-embedded in X,

(ii) for each $\varepsilon > 0$, there exists a compact set F (which may be taken to be a union of finitely many line segments) such that any two elements of $S \cup F$ are ε-linked in $S \cup F$ and such that $r_{\varepsilon}^{S \cup F}$ is finite.

REMARKS. 1. If (X, d) is any uniformly connected metric space, then by embedding X isometrically in a normed linear space and appealing to 1.2 and 2.3 one sees that if every uniformly continuous function $f: X \to \mathbb{R}$ is Lipschitz for large distances, then r_{ε}^X is finite for each positive ε. In fact, the converse of this statement is true as well: If r_{ε}^X is finite for each positive ε, then every uniformly continuous function $f: X \to \mathbb{R}$ is Lipschitz for large distances. Since there are easy examples of metric spaces where not every uniformly continuous real-valued function is Lipschitz for large distances, this means that the finiteness of r_{ε}^S for each positive ε is not in general equivalent to the U-embedding of a subspace S of a space X.

2. We do not know an example of a metric space (X, d) and a non-U-embedded uniformly connected subset S such that r_{ε}^S is finite for each positive ε. However, the following example shows that a uniformly connected, U-embedded subset of a metric space can have infinite r_{ε}^S for all sufficiently small $\varepsilon > 0$.

![Diagram](http://www.ams.org/journal-terms-of-use)
3.4. EXAMPLE. There exists a (uniformly) connected metric space $X \subset \mathbb{R}^2$ and a U-embedded (uniformly) connected subset S such that $r_\varepsilon = +\infty$ for all positive $\varepsilon < 1/2$. Rather than give a description of X and S, we will draw pictures. Any uniformly continuous $f: S \rightarrow \mathbb{R}$ can be extended to a uniformly continuous function $F: X \rightarrow \mathbb{R}$ by making F constant on the small vertical whiskers growing along the y-axis. By restricting our attention to those horizontal bands of S of height $1/n$, one can show that $r_{1/(2n)} = \infty$ for $n = 1, 2, \ldots$. For an arbitrary positive $\varepsilon \leq 1/2$, find an n satisfying $1/(2n) < \varepsilon < 1/n$ (that is, $1/2 < n\varepsilon \leq 1$), and by restricting our attention to the horizontal bands of height $1/n$, we can again show that $r_\varepsilon = \infty$.

REMARKS. 1. By modifying the construction in 3.4, it is possible to find a connected metric space X and a connected U-embedded subset S such that $r_\varepsilon = \infty$ for all $\varepsilon > 0$.

2. By appealing to the results in [LR$_3$] the results in this paper also give results about Hilbert spaces. For example, it is shown in [LR$_3$] that a subset S of a Hilbert space H is U-embedded in H if and only if every uniformly continuous function $f: S \rightarrow H$ extends to a uniformly continuous function $F: H \rightarrow H$. Thus, we also have characterized those subsets of Hilbert space for which every uniformly continuous function into a Hilbert space extends to a uniformly continuous function.

REFERENCES

