WHITNEY LEVELS IN $C_p(X)$ ARE ARS

MARK LYNCH

ABSTRACT. For X a metric continuum, and $p \in X$, we show that the Whitney levels in the relative hyperspace $C_p(X) = \{ K \in C(X) | p \in K \}$ are absolute retracts.

1. Introduction. For (X, d) a metric continuum, let $C(X)$ denote the hyperspace of subcontinua with the Hausdorff metric H. A Whitney map $\mu: C(X) \to [0, 1]$ is a map such that $\mu(\{x\}) = 0$ for each $x \in X$, $\mu(X) = 1$, and $\mu(K) < \mu(M)$ whenever $K \subsetneq M$. Such maps may always be constructed [8]. The point-inverses $\mu^{-1}(t)$, $0 \leq t \leq 1$, are subcontinua in $C(X)$ [4], and are called Whitney levels. For $p \in X$, let $C_p(X) = \{ K \in C(X) | p \in K \}$ be the relative hyperspace, and let μ_p denote the restriction of μ to $C_p(X)$. Eberhart [3] showed that $C_p(X)$ is always an AR. In this paper we consider the relative Whitney levels $\mu_p^{-1}(t)$ in $C_p(X)$. We will use a construction in a space of order arcs to show that each Whitney level $\mu_p^{-1}(t)$ is an AR.

Krasinkiewicz and Nadler [7] and Rogers [11] have shown that $\mu_p^{-1}(t)$ is arcwise connected, and Rogers [10] showed that $\mu_p^{-1}(t)$ is acyclic. We point out that the Whitney levels $\mu_p^{-1}(t)$ need not be arcwise connected [6], and even if X is a 2-cell, they need not be ARs [9].

2. The space of order arcs $\Lambda_p(X)$. An arc $\alpha \subset C(X)$ is an order arc if, for all $K, M \in \alpha$, either $K \subset M$ or $M \subset K$. Then $\bigcap \alpha = \bigcap \{M | M \in \alpha\}$ and $\bigcup \alpha = \bigcup \{M | M \in \alpha\}$ are the endpoints of α. For every pair $A, B \subset C(X)$ with $A \subset B$, there exists an order arc α with $\bigcap \alpha = A$ and $\bigcup \alpha = B$ [6]. An order arc α may be parametrized by defining $\alpha(t)$ to be the unique $K \in \alpha$ such that $\mu(K) = (1-t) \cdot \mu(\bigcap \alpha) + t \cdot \mu(\bigcup \alpha)$. Let Λ_p denote the space of maximal order arcs in $C_p(X)$, i.e., $\Lambda_p = \{ \text{order arcs } \alpha \subset C_p(X) | \alpha(0) = \{p\} \text{ and } \alpha(1) = X \subset C(C(X)) \}$. For each $t \in [0, 1]$, the evaluation map $e_t: \Lambda_p \to \mu_p^{-1}(t)$, defined by $e_t(\alpha) = \alpha(t)$, is onto. We will show that $\mu_p^{-1}(t)$ is an absolute extensor for metric spaces by imitating Dugundji’s proof of the extension property for maps into locally convex linear metric spaces [2]. To do this, we utilize the evaluation map e_t and a type of convex structure on Λ_p.

For $\alpha_1, \ldots, \alpha_n \in \Lambda_p$ and $t_1, \ldots, t_{n-1} \in [0, 1]$, let $\beta = \langle \alpha_1, t_1; \ldots; \alpha_{n-1}, t_{n-1}; \alpha_n \rangle$ be the element of Λ_p defined by

$$\beta = \{ \alpha_1(s) | 0 \leq s \leq t_1 \} \cup \{ \alpha_1(t_1) \cup \alpha_2(s) | 0 \leq s \leq t_2 \}$$
$$\cdots \cup \{ \alpha_1(t_1) \cup \cdots \cup \alpha_{n-1}(t_{n-1}) \cup \alpha_n(s) | 0 \leq s \leq 1 \}.$$
This construction is continuous, in the sense that if \(\alpha_m^m \to \alpha_i \) and \(t_m^i \to t_i \) as \(m \to \infty \), for each \(i \), then \((\alpha_1^m, t_1^m; \ldots; \alpha_{n-1}^m, t_{n-1}^m; \alpha_n^m) \to (\alpha_1, t_1; \ldots; \alpha_{n-1}, t_{n-1}; \alpha_n) \).

3. Extending maps into \(\mu_p^{-1}(t) \). Let \((Z, \rho) \) be a metric space, and \(A \subset Z \) a closed subset. Given a map \(g: A \to \mu_p^{-1}(t) \), we define an extension \(\hat{g}: Z \to \mu_p^{-1}(t) \) of \(g \) by a Dugundji-type construction. For every \(x \in Z - A \), let \(B_x = \{ z \in Z | \rho(x, z) < 1/2 \cdot \rho(x, A) \} \). Let \(U = \{ U_\alpha | \alpha \in A \} \) be a neighborhood finite open refinement of \(\{ B_x | x \in Z - A \} \), indexed by a well-ordered set \(A \). Let \(\{ \phi_\alpha | \alpha \in A \} \) be a partition of unity of \(Z - A \) subordinated to \(U \). With each \(\alpha \in A \), associate \(a_\alpha \in A \) as follows: Choose \(x_\alpha \in U_\alpha \), and take \(a_\alpha \in A \) with \(\rho(x_\alpha, a_\alpha) < 2 \cdot \rho(x_\alpha, A) \). For each \(\alpha \in A \), choose \(\beta_\alpha \in \Lambda_p \) such that \(e_\alpha(\beta_\alpha) = \beta_\alpha(t) = g(a_\alpha) \). Then with each \(x \in Z - A \) there is associated a finite set \(\{ \beta_\alpha | \phi_\alpha(x) > 0 \} \) of elements of \(\Lambda_p \). The extension \(\hat{g}: Z \to \mu_p^{-1}(t) \) is defined in the following steps:

1. For \(x \in Z - A \), let \(\alpha_1 < \alpha_2 < \cdots < \alpha_n \) be the ordering in \(A \) of those elements \(\alpha \) for which \(\phi_\alpha(x) > 0 \), and define
 \[
 \tau(x, \alpha_i) = \frac{\phi_{\alpha_i}(x)}{\phi_{\alpha_1}(x) + \cdots + \phi_{\alpha_n}(x)}, \quad i = 1, 2, \ldots, n.
 \]
 Note that \(\tau(x, \alpha_n) = 1 \).

2. With \(\beta_{\alpha_1}, \ldots, \beta_{\alpha_n} \) the elements of \(\Lambda_p \) corresponding to \(x \), define \(\beta_x = (\beta_{\alpha_1}, \tau(x, \alpha_1); \ldots; \beta_{\alpha_n-1}, \tau(x, \alpha_n); \beta_{\alpha_n}) \).

3. Define \(\hat{g}(x) = e_\alpha(\beta_x) = \beta_x(t) \).

CLAIM 1. \(\hat{g} \) is continuous on \(Z - A \).

Consider \(x \in Z - A \), with \(\alpha_1 < \cdots < \alpha_n \) as in step (1) above. For any \(y \in Z \) sufficiently close to \(x \), each \(\phi_\alpha(y) \) will be near \(\phi_\alpha(x) \), \(i = 1, \ldots, n \). Clearly, this implies that if \(\gamma_1 < \cdots < \gamma_{n+m} \) is the ordering in \(A \) of \(\{ \alpha | \phi_\alpha(y) > 0 \} \), then for each \(k \) such that \(\gamma_k = \alpha_i \) for some \(i \), \(\tau(y, \gamma_k) \) is near \(\tau(x, \alpha_i) \), and for all other \(\gamma_k \), either \(\tau(y, \gamma_k) \) is near 0 or \(\gamma_k < \gamma_k \). It follows that \(\beta_y \) is near \(\beta_x \), and \(\hat{g}(y) \) is near \(\hat{g}(x) \).

CLAIM 2. \(\hat{g} \) is continuous on \(\text{bd} A \).

Consider a \(\alpha \in \text{bd} A \), and let \(y \in Z - A \) denote a point near \(\alpha \). Let \(\{ \alpha_1, \ldots, \alpha_n \} = \{ \alpha \in A | \phi_\alpha(y) > 0 \} \). Then for each \(i \leq n \), the point \(a_\alpha \in A \) associated with \(\alpha_i \) is near \(\alpha \), thus \(\beta_\alpha(t) = g(a_\alpha) \) is near \(g(\alpha) \). Note that the construction of the order arc \(\beta_\alpha(t) \) forces \(\beta_\alpha(t) \subset \beta_{\alpha_1}(t) \cup \beta_{\alpha_2}(t) \cup \cdots \cup \beta_{\alpha_n}(t) \). Since \(M = \bigcup_1^{n+1} \beta_{\alpha_i}(t) \) is an element of \(C_p(X) \) near \(g(\alpha) \in \mu_p^{-1}(t) \), \(\mu(M) \) is near \(t = \mu(\beta_\alpha(t)) \). Since \(\beta_\alpha(t) \subset M \), the nature of the Whitney map \(\mu \) forces \(\beta_\alpha(t) \) and \(M \) to be close. Then \(\hat{g}(y) = \beta_\alpha(t) \) is near \(\hat{g}(\alpha) = g(\alpha) \).

Thus, the extension \(\hat{g}: Z \to \mu_p^{-1}(t) \) of \(g \) is continuous, and this concludes the proof of our main result:

Theorem. Each Whitney level \(\mu_p^{-1}(t) \) in \(C_p(X) \) is an AR.

There are several easy corollaries.

Corollary 1. \(\{ X \} \) is an unstable point in \(C_p(X) \).

Proof. Given \(\varepsilon > 0 \), choose \(t < 1 \) sufficiently close to 1 so that \(\text{diam}_H(\mu_p^{-1}([t, 1])) < \varepsilon \).
Since $\mu_p^{-1}(t)$ is an AR, there is a retraction $r: \mu_p^{-1}([t, 1]) \to \mu_p^{-1}(t)$. Then r extends by the identity to a retraction $R: C_p(X) \to \mu_p^{-1}([0, t])$. We have $R(C_p(X)) \subset C_p(X) - \{X\}$ and $H(R(M), M) < \varepsilon$ for each $M \in C_p(X)$. Thus, $\{X\}$ is unstable in $C_p(X)$.

Note that the above retraction R shows that $\mu_p^{-1}([0, t])$ is an AR. In fact, a similar argument shows that $\mu_p^{-1}([s, t])$ is an AR for all $s < t$.

Corollary 2. $C_p(X) - \{X\}$ is an AR.

Proof. Since $C_p(X) - \{X\}$ is an ANR, it suffices to show that it is n-connected for all n [5]. Let $f: S^n \to C_p(X) - \{X\}$ be a map of the n-sphere. Choose $t < 1$ such that $f(S^n) \subset \mu_p^{-1}([0, t])$. Then f is null-homotopic in the AR $\mu_p^{-1}([0, t])$, thus $C_p(X) - \{X\}$ is n-connected for all n.

If X has a cut point p, then clearly $\mu^{-1}(t) = \mu_p^{-1}(t)$ for all t in some neighborhood of 1. Thus we have the following

Corollary 3. If X has a cut point, then

(i) for all t in some neighborhood of 1, $\mu^{-1}(t)$ is an AR; and
(ii) $\{X\}$ is unstable in $C(X)$.

The general question suggested by part (ii) has been answered in [1]: For X a Peano continuum, $\{X\}$ is stable in $C(X)$ if and only if X is a finite graph with no cut points.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

Current address: 5466 Harpers Farm Road, Apartment A4, Columbia, Maryland 21044