Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Diophantine equation $ x\sp {2n}-\mathcal{D}y^2=1$


Author: Zhen Fu Cao
Journal: Proc. Amer. Math. Soc. 98 (1986), 11-16
MSC: Primary 11D41
DOI: https://doi.org/10.1090/S0002-9939-1986-0848864-4
MathSciNet review: 848864
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, it has been proved that if $ n > 2$ and Pell's equation $ {u^2} - \mathcal{D}{v^2} = - 1$ has integer solution, then the equation $ {x^{2n}} - \mathcal{D}{y^2} = 1$ has only solution in positive integers $ x = 3$, $ y = 22$ (when $ n = 5$, $ \mathcal{D} = 122$). That is proved by studying the equations $ {x^p} + 1 = 2{y^2}$ and $ {x^p} - 1 = 2{y^2}$ ($ p$ is an odd prime). In addition, some applications of the above result are given.


References [Enhancements On Off] (What's this?)

  • [1] Ko Chao and Sun Chi, On the diophantine equation $ {x^4} - D{y^2} = 1$. II, Chinese Ann. Math. Ser. A 1 (1980), 83-88. MR 591236 (83m:10019)
  • [2] Cao Zhenfu, On the diophantine equations $ {x^2} + 1 = 2{y^2}$ and $ {x^2} - 1 = 2D{z^2}$, J. Math. (Wuhan) 3 (1983), 227-235. MR 747900 (85j:11032)
  • [3] L. J. Mordell, Diophantine equations, Academic Press, London and New York, 1969. MR 0249355 (40:2600)
  • [4] Ko Chao, On the diophantine equation $ {x^2} = {y^n} + 1$, $ xy \ne 0$, Sichun Daxue Xuebao 1 (1962), 1-6.
  • [5] W. Ljunggren, Some theorems on indeterminate equations of the form $ ({x^n} - 1)/(x - 1) = {y^q}$, Norsk Mat. Tidsskr. 25 (1943), 17-20. MR 0018674 (8:315a)
  • [6] R. W. van der Waall, On the diophantine equations $ {x^2} + x + 1 = 3{v^2}$, $ {x^3} - 1 = 2{y^2}$, $ {x^3} + 1 = 2{y^2}$, Simon Stevin 46 (1972/73), 39-51. MR 0316374 (47:4921)
  • [7] P. Erdös, On a diophantine equation, J. London Math. Soc. 26 (1951), 176-178. MR 0041156 (12:804d)
  • [8] W. Ljunggren, On the Diophantine equation $ C{x^2} + D = 2{y^n}$, Math. Scand. 18 (1966), 69-86. MR 0204358 (34:4200)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D41

Retrieve articles in all journals with MSC: 11D41


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0848864-4
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society