NOTE ON NILPOTENT DERIVATIONS

P. H. LEE AND T. K. LEE

Abstract. Let R be a prime ring with center Z. Suppose that d is a derivation on R such that $d^n(x) \in Z$ for all x, where n is a fixed integer. It is shown that either $d^n(x) = 0$ for all $x \in R$ or R is a commutative integral domain. Moreover, the same conclusion holds even if we assume that $d^n(x) \in Z$ merely for all $x \in I$, where I is a nonzero ideal of R.

Let R be a prime ring with center Z and a derivation d. Suppose that $d(x) \in Z$ for all $x \in R$, then one can easily show that either $d = 0$ or R is commutative [3, Proof, Theorem 2]. If $d^2(x) \in Z$ for all $x \in R$, we have the same conclusion when R is not of characteristic 2 [3, Theorem 3]. On the other hand, in case char $R = 2$ there exist nonzero derivations d on R such that $d^2 = 0$ provided R is not a domain. One might naturally ask what we can conclude in general if $d^n(x) \in Z$ for all $x \in R$, where n is some fixed integer. Certainly, this condition is fulfilled when d is nilpotent of nilpotency n or when R is a commutative ring. We prove here that these are indeed the only two possibilities where $d^n(R) \subseteq Z$ can happen.

Theorem 1. Let R be a prime ring with center Z and a derivation d on R such that $d^n(R) \subseteq Z$ for some natural number n. Then either $d^n = 0$ or R is commutative.

Proof. First note that if $Z = 0$ there is nothing to prove. So we assume that $Z \neq 0$ and proceed to prove by induction on n. When $n = 1$, the conclusion holds as we mentioned at the beginning. Now assume that $n > 1$ and the theorem is true for $< n$.

Suppose that char $R = p$; then $\delta = d^p$ is also a derivation on R. If n is divisible by p, the assumption reads $\delta^{n/p}(R) \subseteq Z$. Since $n/p < n$, it follows from induction hypothesis that either $d^n = \delta^{n/p} = 0$ or R is commutative. So we may henceforth assume that R is of characteristic 0 or a prime p not dividing n.

For $\alpha \in Z$ and $x \in R$, we have $d^n(ad^{-1}(x)) \in Z$. That is,

$$d^n(\alpha)d^{-1}(x) + \sum_{i=1}^{n} \binom{n}{i} d^{n-i}(\alpha)d^{i-1}(x) \in Z$$

for all $\alpha \in Z$, $x \in R$. Note that each term in the summation is already in Z, therefore $d^n(Z)d^{-1}(R) \subseteq Z$. Consequently, either $d^n(Z) = 0$ or $d^{n-1}(R) \subseteq Z$. If $d^{n-1}(R) \subseteq Z$ we are done by induction hypothesis. So we assume that $d^n(Z) = 0$.

Received by the editors July 29, 1985 and, in revised form, September 4, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A72.

Key words and phrases. Prime rings, derivations.
Let \(m \) be the smallest integer such that \(d^m(Z) = 0 \). Assume first that \(m \geq 2 \). For \(\alpha \in Z \) and \(x \in R \) we have
\[
d^n(d^{m-2}(\alpha)x) = d^{m-2}(\alpha)d^n(x) + nd^{m-1}(\alpha)d^{n-1}(x) \in Z.
\]
Since \(d^{m-2}(\alpha)d^n(x) \in Z \), we have \(nd^{m-1}(\alpha)d^{n-1}(x) \in Z \) for all \(\alpha \in Z \), \(x \in R \). Recall that char \(R \) is 0 or \(p \neq n \), so \(d^{m-1}(Z)d^{n-1}(R) \subseteq Z \) follows. By the minimality of \(m \), \(d^{m-1}(Z) \neq 0 \) so \(d^{n-1}(R) \subseteq Z \), and we are done. Hence it remains to check the case when \(m = 1 \), that is, \(d(Z) = 0 \).

Since \(Z \neq 0 \), we may localize \(R \) at \(Z \) to get a ring \(S = \{a/\alpha | a \in R, \alpha \in Z, \alpha \neq 0\} \). Then \(S \) is a prime ring with center the quotient field of \(Z \). Moreover, we can extend \(d \) to a derivation \(\tilde{d} \) on \(S \) by defining \(\tilde{d}(a/\alpha) = d(a)/\alpha \). Then \(\tilde{d}^n(S) \subseteq Z(S) \), the center of \(S \). So we may replace \(R \) and \(d \) by \(S \) and \(\tilde{d} \), respectively, and assume that \(Z \) is a field. Thus \(d^n(R) \) is a \(Z \)-subspace of dimension at most 1.

Let \(k \) be the smallest integer such that \(d^k(R) \) is finite dimensional over \(Z \). Assume that \(k \geq 1 \). For \(x, y \in R \) we have
\[
d^n(d^{k-1}(x)y) = d^{k-1}(x)d^n(y) + \sum_{i=1}^{n} \binom{n}{i} d^{k+i-1}(x)d^{n-i}(y) \in Z.
\]
Note that \(d^{k+i-1}(R) \) is finite dimensional over \(Z \), so is \(d^{k+i-1}(R)d^{n-i}(y) \) for all \(y \in R \) and \(i \geq 1 \). Thus it follows that \(d^{k-1}(R)d^n(y) \) must be finite dimensional over \(Z \) for each \(y \in R \). Since \(d^n(y) \in Z \), we would have \(d^{k-1}(R) \) finite dimensional to contradict the choice of \(k \) provided \(d^n(y) \) were not zero. Hence we must have \(d^n(R) = 0 \).

At last, assume that \(k = 0 \), that is, \(R \) is finite dimensional over \(Z \). Being a prime ring, \(R \) must be simple. Now \(d(Z) = 0 \), so \(d \) must be inner by a classic result [2, Proposition, p. 100]. In other words, there exists \(a \in R \) such that \(d(x) = ax - xa \) for all \(x \in R \). Thus \(ad^n(x) = d^n(ax) \in Z \), and so either \(a \in Z \) or \(d^n(x) = 0 \) for all \(x \in R \). In either case, we have always \(d^n = 0 \). This completes the proof.

Next we extend the previous theorem by conditioning \(d^n(x) \in Z \) merely for all \(x \) in some nonzero ideal \(I \) of \(R \).

Theorem 2. Let \(R \) be a prime ring with center \(Z \) and \(I \) a nonzero ideal of \(R \). Suppose that \(d \) is a derivation on \(R \) such that \(d^n(I) \subseteq Z \) for some natural number \(n \). Then either \(d^n = 0 \) or \(R \) is commutative.

Proof. Let \(J = I + d(I) + d^2(I) + \cdots \). Then \(J \) is a nonzero ideal of \(R \), \(d(J) \subseteq J \), and \(d^n(J) \subseteq Z \). Applying Theorem 1, we can conclude that either \(d^n(J) = 0 \) or \(J \) is a commutative ring. However, if \(d^n(J) = 0 \), then \(d^n = 0 \) by a theorem due to Chung and Luh [1]; while if \(J \) is commutative, so is the whole ring \(R \). Thus the theorem is proved.

References

Department of Mathematics, National Taiwan University, Taipei, Taiwan