NOTE ON NILPOTENT DERIVATIONS

P. H. LEE AND T. K. LEE

Abstract. Let \(R \) be a prime ring with center \(Z \). Suppose that \(d \) is a derivation on \(R \) such that \(d^n(x) \in Z \) for all \(x \), where \(n \) is a fixed integer. It is shown that either \(d^n(x) = 0 \) for all \(x \in R \) or \(R \) is a commutative integral domain. Moreover, the same conclusion holds even if we assume that \(d^n(x) \in Z \) merely for all \(x \in I \), where \(I \) is a nonzero ideal of \(R \).

Let \(R \) be a prime ring with center \(Z \) and a derivation \(d \). Suppose that \(d(x) \in Z \) for all \(x \in R \), then one can easily show that either \(d = 0 \) or \(R \) is commutative [3, Proof, Theorem 2]. If \(d^2(x) \in Z \) for all \(x \in R \), we have the same conclusion when \(R \) is not of characteristic 2 [3, Theorem 3]. On the other hand, in case \(\text{char } R = 2 \) there exist nonzero derivations \(d \) on \(R \) such that \(d^2 = 0 \) provided \(R \) is not a domain. One might naturally ask what we can conclude in general if \(d^n(x) \in Z \) for all \(x \in R \), where \(n \) is some fixed integer. Certainly, this condition is fulfilled when \(d \) is nilpotent of nilpotency \(n \) or when \(R \) is a commutative ring. We prove here that these are indeed the only two possibilities where \(d^n(R) \subseteq Z \) can happen.

Theorem 1. Let \(R \) be a prime ring with center \(Z \) and \(d \) a derivation on \(R \) such that \(d^n(R) \subseteq Z \) for some natural number \(n \). Then either \(d^n = 0 \) or \(R \) is commutative.

Proof. First note that if \(Z = 0 \) there is nothing to prove. So we assume that \(Z \neq 0 \) and proceed to prove by induction on \(n \). When \(n = 1 \), the conclusion holds as we mentioned at the beginning. Now assume that \(n > 1 \) and the theorem is true for \(< n \).

Suppose that \(\text{char } R = p \); then \(\delta = d^p \) is also a derivation on \(R \). If \(n \) is divisible by \(p \), the assumption reads \(\delta^n/p(R) \subseteq Z \). Since \(n/p < n \), it follows from induction hypothesis that either \(d^n = \delta^n/p = 0 \) or \(R \) is commutative. So we may henceforth assume that \(R \) is of characteristic 0 or a prime \(p \) not dividing \(n \).

For \(\alpha \in Z \) and \(x \in R \), we have \(d^n(ad^{-1}(x)) \in Z \). That is,

\[
d^n(\alpha)d^{-1}(x) + \sum_{i=1}^{n} \binom{n}{i} d^{n-i}(\alpha)d^{n+i-1}(x) \in Z
\]

for all \(\alpha \in Z \), \(x \in R \). Note that each term in the summation is already in \(Z \), therefore \(d^n(Z)d^{-1}(R) \subseteq Z \). Consequently, either \(d^n(Z) = 0 \) or \(d^{n-1}(R) \subseteq Z \). If \(d^{n-1}(R) \subseteq Z \) we are done by induction hypothesis. So we assume that \(d^n(Z) = 0 \).
Let \(m \) be the smallest integer such that \(d^m(Z) = 0 \). Assume first that \(m \geq 2 \). For \(\alpha \in Z \) and \(x \in R \) we have
\[
d^n(d^{m-2}(\alpha)x) = d^{m-2}(\alpha)d^n(x) + nd^{m-1}(\alpha)d^{n-1}(x) \in Z.
\]
Since \(d^{m-2}(\alpha)d^n(x) \in Z \), we have \(nd^{m-1}(\alpha)d^{n-1}(x) \in Z \) for all \(\alpha \in Z, x \in R \). Recall that \(\text{char} R \) is 0 or \(p \nmid n \), so \(d^{m-1}(Z)d^{n-1}(R) \subseteq Z \) follows. By the minimality of \(m \), \(d^{m-1}(Z) \neq 0 \) so \(d^{n-1}(R) \subseteq Z \), and we are done. Hence it remains to check the case when \(m = 1 \), that is, \(d(Z) = 0 \).

Since \(Z \neq 0 \), we may localize \(R \) at \(Z \) to get a ring \(S = \{a/\alpha| a \in R, \alpha \in Z, \alpha \neq 0\} \). Then \(S \) is a prime ring with center the quotient field of \(Z \). Moreover, we can extend \(d \) to a derivation \(\tilde{d} \) on \(S \) by defining \(\tilde{d}(a/\alpha) = d(a)/\alpha \). Then \(\tilde{d}^n(S) \subseteq Z(S) \), the center of \(S \). So we may replace \(R \) and \(d \) by \(S \) and \(\tilde{d} \), respectively, and assume that \(Z \) is a field. Thus \(d^n(R) \) is a \(Z \)-subspace of dimension at most 1.

Let \(k \) be the smallest integer such that \(d^k(R) \) is finite dimensional over \(Z \). Assume that \(k \geq 1 \). For \(x, y \in R \) we have
\[
d^n(d^{k-1}(x)y) = d^{k-1}(x)d^n(y) + \sum_{i=1}^{n} \binom{n}{i} d^k y d^{n-i}(y) \in Z.
\]
Note that \(d^{k+i-1}(R) \) is finite dimensional over \(Z \), so is \(d^{k+i-1}(R)d^{n-i}(y) \) for all \(y \in R \) and \(i \geq 1 \). Thus it follows that \(d^{k-1}(R)d^n(y) \) must be finite dimensional over \(Z \) for each \(y \in R \). Since \(d^n(y) \in Z \), we would have \(d^{k-1}(R) \) finite dimensional to contradict the choice of \(k \) provided \(d^n(y) \) were not zero. Hence we must have \(d^n(R) = 0 \).

At last, assume that \(k = 0 \), that is, \(R \) is finite dimensional over \(Z \). Being a prime ring, \(R \) must be simple. Now \(d(Z) = 0 \), so \(d \) must be inner by a classic result [2, Proposition, p. 100]. In other words, there exists \(a \in R \) such that \(d(x) = ax - xa \) for all \(x \in R \). Thus \(ad^n(x) = d^n(ax) \in Z \), and so either \(a \in Z \) or \(d^n(x) = 0 \) for all \(x \in R \). In either case, we have always \(d^n = 0 \). This completes the proof.

Next we extend the previous theorem by conditioning \(d^n(x) \in Z \) merely for all \(x \) in some nonzero ideal \(I \) of \(R \).

Theorem 2. Let \(R \) be a prime ring with center \(Z \) and \(I \) a nonzero ideal of \(R \). Suppose that \(d \) is a derivation on \(R \) such that \(d^n(I) \subseteq Z \) for some natural number \(n \). Then either \(d^n = 0 \) or \(R \) is commutative.

Proof. Let \(J = I + d(I) + d^2(I) + \cdots \). Then \(J \) is a nonzero ideal of \(R \), \(d(J) \subseteq J \), and \(d^n(J) \subseteq Z \). Applying Theorem 1, we can conclude that either \(d^n(J) = 0 \) or \(J \) is a commutative ring. However, if \(d^n(J) = 0 \), then \(d^n = 0 \) by a theorem due to Chung and Luh [1]; while if \(J \) is commutative, so is the whole ring \(R \). Thus the theorem is proved.

References