Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness for singular backward parabolic inequalities


Author: Alan V. Lair
Journal: Proc. Amer. Math. Soc. 98 (1986), 56-60
MSC: Primary 35K15; Secondary 35K20, 35R45
DOI: https://doi.org/10.1090/S0002-9939-1986-0848875-9
MathSciNet review: 848875
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the only solution of the partial differential inequality

$\displaystyle {\left( {{u_t} + \sum\limits_{i = 1}^n {\left[ {{u_{{x_i}}}_{{x_i... ...} \right]} } \right)^2} \leqslant c\left[ {{u^2} + \vert{u_x}{\vert^2}} \right]$

on a bounded region with homogeneous initial and boundary conditions is the trivial one.

References [Enhancements On Off] (What's this?)

  • [1] V. Alexiades, Generalized axially symmetric heat potentials and singular parabolic initial-boundary value problems, Arch. Rational Mech. Anal. 79 (1982), 325-350. MR 656798 (83k:35043)
  • [2] -, A singular parabolic initial-boundary value problem in non-cylindrical domain, SIAM J. Math. Anal. 11 (1980), 348-357. MR 559874 (81i:35079)
  • [3] K. A. Ames, Uniqueness and continuous dependence results for solutions of singular differential equations, J. Math. Anal. Appl. 103 (1984), 172-183. MR 757633 (86h:35034)
  • [4] O. Arena, On a degenerate elliptic-parabolic equation, Comm. Partial Differential Equations 3 (1978), 1007-1040. MR 507784 (81k:35066)
  • [5] W. Feller, An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR 0210154 (35:1048)
  • [6] -, Two singular diffusion problems, Ann. of Math. (2) 54 (1951), 173-182. MR 0054814 (14:983f)
  • [7] A Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J., 1964. MR 0181836 (31:6062)
  • [8] A. V. Lair, A unique continuation theorem involving a degenerate parabolic operator, Proc. Amer. Math. Soc. 66 (1977), 41-45. MR 0466968 (57:6841)
  • [9] M. Lees and M. H. Protter, Unique continuation for parabolic equations and inequalities, Duke Math. J. 28 (1961), 369-382. MR 0140840 (25:4254)
  • [10] L. E. Payne, Improperly posed problems in partial differential equations, SIAM, Philadelphia, Pa., 1975. MR 0463736 (57:3678)
  • [11] C. C. Travis and E. C. Young, Uniqueness of solutions to singular boundary value problems, SIAM J. Math. Anal. 8 (1977), 111-117. MR 0430510 (55:3515)
  • [12] E. C. Young, Uniqueness of solution of a singular heat equation, Internat. J. Math. Math. Sci. 7 (1984), 201-204. MR 743839 (85f:35100)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K15, 35K20, 35R45

Retrieve articles in all journals with MSC: 35K15, 35K20, 35R45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0848875-9
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society