The exact cardinality of the set of topological left invariant means on an amenable locally compact group

Authors:
Anthony To Ming Lau and Alan L. T. Paterson

Journal:
Proc. Amer. Math. Soc. **98** (1986), 75-80

MSC:
Primary 43A07; Secondary 43A15

DOI:
https://doi.org/10.1090/S0002-9939-1986-0848879-6

MathSciNet review:
848879

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to prove that if is an amenable locally compact noncompact group, then the set of topological left invariant means on has cardinality , where is the smallest cardinality of the covering of by compact sets. We also prove that in this case the spectrum of the bounded left uniformly continuous complex-valued functions contains exactly minimal closed invariant subsets (or left ideals)

**[1]**J. W. Baker and P. Milnes,*The ideal structure of the Stone-Čech compactification of a group*, Math. Proc. Cambridge Philos. Soc.**82**(1977), 401-409. MR**0460516 (57:509)****[2]**C. Chou,*On topological invariant meas on a locally compact group*, Trans. Amer. Math. Soc.**151**(1970), 443-456. MR**0269780 (42:4675)****[3]**-,*The exact cardinality of the set of invariant means on a group*, Proc. Amer. Math. Soc.**55**(1976), 103-106. MR**0394036 (52:14842)****[4]**M. M. Day,*Fixed-point theorems for compact convex sets*, Illinois J. Math.**5**(1961), 585-590. MR**0138100 (25:1547)****[5]**-,*Correction to my paper "Fixed-point theorems for compact convex sets"*, Illinois J. Math.**8**(1964), 713. MR**0169210 (29:6463)****[6]**E. E. Granirer,*Exposed points of convex sets and weak sequential convergence*, Mem. Amer. Math. Soc. No. 123(1972). MR**0365090 (51:1343)****[7]**F. P. Greenleaf,*Invariant means on topological groups*, Van Nostrand Math. Studies, Van Nostrand Reinhold, 1969. MR**0251549 (40:4776)****[8]**E. Hewitt and K. Ross,*Abstract harmonic analysis*1, Springer-Verlag, Berlin and New York, 1963.**[9]**A. T. Lau,*Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups*, Math. Proc. Cambridge Philos. Soc. (to appear). MR**817669 (87i:43001)****[10]**T. Mitchell,*Constant functions and left invariant means on semigroups*, Trans. Amer. Math. Soc.**119**(1965), 244-261. MR**0193523 (33:1743)****[11]**T. S. Liu and A. van Rooij,*Invariant means on a locally compact group*, Monatsh. Math.**78**(1974), 356-359. MR**0358218 (50:10683)****[12]**A. L. T. Paterson,*The cardinality of the set of left invariant means on a left amenable semigroup*, Illinois J. Math.**29**(1985), 567-583. MR**806467 (87d:43001)****[13]**J. P. Pier,*Amenable locally compact groups*, Wiley, New York, 1984. MR**767264 (86a:43001)****[14]**J. M. Rosenblatt,*The number of extensions of an invariant mean*, Compositio Math.**33**(1976), 147-159. MR**0435729 (55:8687)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
43A07,
43A15

Retrieve articles in all journals with MSC: 43A07, 43A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0848879-6

Keywords:
Amenable locally compact groups,
invariant means,
left thick subsets,
uniformly continuous functions,
minimal invariant sets

Article copyright:
© Copyright 1986
American Mathematical Society