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AN EXTENDED CENCOV CHARACTERIZATION

OF THE INFORMATION METRIC

L. L. CAMPBELL1

Abstract. Cencov has shown that Riemannian metrics which are derived from the

Fisher information matrix are the only metrics which preserve inner products under

certain probabilistically important mappings. In Cencov's theorem, the underlying

differentiable manifold is the probability simplex E"x, = 1, x¡ > 0. For some

purposes of using geometry to obtain insights about probability, it is more conveni-

ent to regard the simplex as a hypersurface in the positive cone. In the present paper

Cencov's result is extended to the positive cone. The proof uses standard techniques

of differential geometry but does not use the language of category theory.

1. Introduction. There has been a good deal of interest in the use of differential

geometry to interpret certain operations on probability distributions in statistics

[2,4,5], biomathematics [9], thermodynamics [7], and information theory [3]. Further

references are to be found in those cited above. Much of this literature begins by

introducing a Riemannian metric which is generated by the Fisher information

matrix. One reason for singling out this particular metric is to be found in a theorem

of Cencov [4, Theorem 11.1 or Lemma 11.3], which characterizes this information

metric on the probability simplex as the only metric having a certain invariance

property under some probabilistically natural mappings.

In this paper, we develop a characterization theorem which is closely related to

Cencov's. The principal difference between the two theorems is that we characterize

Riemannian metrics on the positive cones R^ = {x = (xx,..., x„): x¡ > 0}, while

Cencov characterizes them on the probability Simplexes Sn_x = {x g R^:Ex, = 1}.

As will be seen later, the connection between geometry and probability is enhanced

if Sn_i is regarded as a surface in the differentiable manifold R*. In addition, some

of Shahshahani's development [9] requires a metric on R+. A second difference from

Cencov's theorem is that neither the statement of our result nor the proof use the

language of category theory.

2. Markov mappings. Let m and n be integers satisfying 2 < m < n and let

{ Ax,..., Am } be a partition of the set (1,2,..., n} into disjoint subsets. To each A¡,
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associate a probability vector £(,) = (aiX,..., qin) concentrated on A¡. That is,
n

ííy.-0   dj$At,      qu>0   iîjeA,,       I?,-l.
7 = 1

Define a mapping /: R* -» R* by
m

(1) >,■ = £*,?„,       7 e {1,2,...,«}.
(=1

Note that / maps Sm_x into S„_, (and, more generally, the simplex T.x¡ = a into

the simplex £_y, = a). Following Cencov [4, p. 56 and Lemma 9.5, p. 136], we shall

refer to a mapping of this type as a congruent embedding of R^ in R+ by a Markov

mapping.

Associated with the map / is another map g: R^ -» R+ defined by

(2) xt =  Zyp       ¿e {1,2,..., m}.

Note that / is one-to-one while g is many-to-one and that the composition g ° / is

the identity map on R+.

The mappings (1) and (2), when restricted to the Simplexes Sm_x and S„_x

respectively, have clear probabilistic interpretations. In fact, because of the special

form of Q('\ there is exactly one positive term in each of the sums (1) because there

is exactly one set A¡ which contains j as an element. Hence, once the vectors Q0)

are chosen, the components yy of y = f(x) are each of the form qtjX¡. Thus, in a

quite elementary way, the image f(Sm_x) in Sn_x is like Sm_x. If we wish to change

x in Sm_i, we can equally well look at the effect of changing y in f(Sm_x). This led

Cencov to seek our Riemannian metrics on Sm_x and Sn_x which are invariant

under congruent embeddings by Markov mappings. The notion of invariance used is

that inner products should be unchanged when tangent vectors are mapped by the

Jacobian map /„,. We develop a similar result on the manifolds R^ and R+.

Before going on, we remark that when m = n the mapping / is just a permutation

of the components of (xx,...,x„) and g is the inverse permutation. When m = n —

1, we can, up to permutations, take A¡={i}íori = l,2,...,n — 2 and An_x = {n

— l,n}. For this special case,

(3) g(yu ■■■,y„) = (yi,y2<--->yn-2>yn-i +'/■)"•

Permutations and mappings of the type (3) plan an essential role in the characteriza-

tion of information measures [1]. More general mappings of the form (2) are easily

seen to be compositions of mappings of the type (3).

3. Isometries. Our terminology and notation for differential geometry follow

Hicks [6]. To each x g R+ there is associated a tangent space Mx, the vector space

of derivations evaluated at x. The set { X¡ = 3/3x,, i = 1,2,..., m} is a basis for Mx

and {Yj = d/dy,, i = 1,2,..., n} is similarly a basis for My, y G R¿. If y = f(x),

the Jacobian map fm maps Mx to M so that Y = fmX means that Y<p = X<p » f, for

every C00 function <j> with domain a neighborhood of y. When / is defined by (1),

(4) /**, = i qtjYj.
7-1
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Now suppose that Riemannian metrics, i.e. Cx inner products on tangent spaces,

are defined on R+ and R+. For vectors U and V in Mx, their inner product will be

denoted by (U,V)m(x); a similar notation is employed in R+. The mapping / is

called an isometry if

(5) (U,V)m(x)=(f¿J,UV)n(y)

for all x g R+ and all U and V in Mx, where y = f(x).

4. Characterization theorem. The principal result of this paper is the following

variant of a result of Cencov [4, Theorem 11.1].

Theorem. Let { ,)m be a Riemannian metric on R+ for m g {2,3,... }. Let this

sequence of metrics have the property that every congruent embedding by a Markov

mapping is an isometry. Then

(6) (X„ Xj)Jx) = A([x\) + 8u]x\B(\x\)/Xi,

where \x\ = T,fx¡, 8¡j is the Kronecker delta, and A and B are C°° functions on R+

satisfying 5(a) > 0 and A(a) + B(a) > 0 for all a > 0. Conversely, if A and B are

C°° functions on R+ satisfying B(a) > 0, A(a) + B(a) > 0, then (6) defines a

sequence of Riemannian metrics under which every congruent embedding by a Markov

mapping is an isometry.

Proof. Let g,. • be defined by

(7) g}f(x) = {x„XJ)m(x),    g\j\y) = {Yi,YJ)n(y),

where y = f(x). Then gtj = gj¡. Consider first the case m = n and the Markov

mapping frs which interchanges xr and xs while leaving the other coordinates

unchanged. Then it is easily seen that frs. interchanges Xr and Xs; that is

frs.Xr=Ys,       f„.Xs=Y„       frs.X,= Yt   otherwise.

Thus, by (5) and (7) and the symmetry of inner products,

g(rjm)(x) = g(sf{y)      for y £{/-,*},

(8) g<r>(*) = glTKyl
8Íjm)(x) = g¡jm)(y)      otherwise.

Next, consider (8) on the center line, xx = x2 = ■ • • = xm. If we put x =

(a/m, a/m,..., a/m), where a = |3c|, then /„(3c) = 3c and thus

(9) g^(x) = Fm(a)   for all r G {1,2,..., m}

and

(10) g^(x) = Gm(a)    îorrïs, r, i G {1,2,..., m},

where Fm and G„ are some C00 functions on R+.

Next, let n = km where k is an integer larger than one and consider the Markov

mapping y = fk(x) defined by

—  i£i JÇi_    £2 £2 £m Xm \

y     y k ,..., k , k ,..., k ,..., k ,..., k j,
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each component being repeated k times. From (4),

fk.X,= (l/k){Y(l_X)k + x+...+Yik)

and, by (5) and (7),

(H) ^"¿W.

where the summation is for (i - l)k + 1 < r < ik, (j - l)k + 1 ^ s ^jk. Now if

x = x = (a/m,...,a/m), then y = y = (a/n,...,a/n). Thus from (9)—(11),

(12) Fm(a) = \Fn(a) + ^Gn(a)

and

(13) Gm(a) = G„(a),

where n = km.

Since m and k can be chosen arbitrarily, (13) implies that Gm(a) = A(a), where A

is some C00 function. Moreover, (12) can be written

(Fja) - A(a))/m = (Fmk(a) - A(a))/mk,

which implies that the left side is equal to some C°° function B(a), independent of

m. Consequently, at points 3c on the center line,

(14) g^(x) = A(a) + mB(a)8ij,

where a = \x\.

Next, let x be a point in R^, of the form

(15) ^/üEL.fÜ,...,«*.
\   n        n n

where T.kj = n, all k¡ are positive integers, and a = |jc| > 0. Consider the partition

of {1,2,..., n } into the sets

A,= {l,2,...,kx},       A2= {kx + l,...,k2),   etc.

with the probability vectors Q(,) = (qiX,..., qin) defined by

(16) 1U-Ik     lîhk,<J^xk»
\ 0       otherwise.

The corresponding Markov mapping / maps x to y = (a/n, a/n,..., a/n). More-

over, by (4),

(17) UX, = y (ril+... +fc(_J+1 + • • • +Yki+ ... +k¡).

Consequently, by (5), (7), (14), and (17)

g\p{x) = A(a)    ioti*j

and

g^)(x) = ^-2[kfA(a)+kinB(a)}.
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Hence, for any x of the form (15),

(18) g^(x) = A(a) + 8,JaB(a)/xi,

since xi = ak¡/n.

Finally, any x G R + can be approximated arbitrarily well by an x of the form

(15) with a = \x\. Since g\f is a C°° function, (18) must hold for all x. Thus (6)

holds.

The sign conditions on A and B follow from the positive-definiteness of inner

products. Let X be any vector in the tangent space Mx and let X = T.a¡X¡. Then by

(6) or (18),

(X,X)m = A(\x\){lial)2+]x\B(\x])Z
<a2

If La, = 0 we see that B(\x[) > 0 is a necessary condition for positive definiteness.

Also, if ai = x¡, then

(X,X)m=\x\2[A(\x[) + B(\x\)],

from which it follows that A(\x[) + 73(|jc|) > 0 is a necessary condition.

To prove the converse, observe first that by Cauchy's inequality,

.4(|x|) + B(\x\) > 0

A(\x\)(Zat)2 + |x|A(|x|)EÍ^) > A(\x[)(¿:a,)2 + B(\x\)(Zat)2 > 0.

Thus if B(\x\) > 0 and A(\x\) + B(\x\) > 0

{hxl,uxJ)n{y) = ZyLqtkqJi
k     I

M\y\) +

It is straightforward to show that this expression equals zero if and only if all a, = 0.

Thus (6) defines an inner product.

To check the isometry condition use (4) and (6) to get

8kl\y\H\y\V
yk

For Markov mappings y = f(x) we have \y\ = \x\ and Y.kqik = 1. Thus

{UX¡,UXJ)¿y)=A(]x\)+\x]B(\x\)Yáq-^.
k      yk

However by the definition of Markov mappings qikqjk = 0 if i # j. Also

iyk/xi    iik^A,,

q,k     \0 if k<£A¡,

since, as pointed out earlier each sum (1) has only one nonzero term. Hence

y a<kajk      s     y    qj±=lA2.

k      yk UkeA, Xi        xt '

since Y.k q,k = 1. Thus

(f,Xi,f.XJ)n(y) = (X,,XJ)Jx),

as claimed.



140 L. L. CAMPBELL

It is worth noting that the method of proof used here, and particularly the use of x

defined by (15) and the mapping by (16), is reminiscent of Khinchin's [8] characteri-

zation theorem for entropy.

5. Concluding remarks. If we take ^4(|jc|) = 0 and B(\x[) = 1 in (6), we obtain the

Riemannian metric of Cencov [4] and Shahshahani [9]. For vectors X = T.ajXi and

W =HbiXAmMx,

(X,W)m(x) = A(\x[){Za){Zb)+\x\B(\x[)z[^\

If X is tangent to a simplex |x| = constant, then La, = 0 and the choice of A is

immaterial. Since Cencov [4] dealt with vectors in the tangent space to the manifold

Sm_x the term involving ^4(|jc|) is absent from his work.

Even in R+, the choice ^4(|jc|) = 0, B(\x\) = l leads to interesting geometric

interpretations. This choice is employed for the remainder of this paper. Some

questions related to information theory have been investigated in a separate paper

[3]; here we indicate some connections with probability and statistics.

For x G S„_i, let N = T.x{Xt U = Lu^A",, V — Li»,*,^,. Then, in this inner

product, N is a unit vector which is normal to the simplex Sm_x in each tangent

space Mx, x g Sm_x. In addition,

(N,U)Jx) = £«,*,,       (N,V)m(x) = !>,*,..

Thus, if xx,..., xm are interpreted as probabilities, the normal component of U

appears as the expected value of a random variable which takes the values ux,...,um.

Moreover, if IT is the projection of [/on Sm_x,

U' = U-(N,U)m(x)N

and V is similarly the projection of V, then

<^.^>J*)-Ew,-(£«i*i)(5>,*,)-
This is the covariance of the associated random variables. Thus there is a natural

association between random variables and the special class of vector fields of the

form TlUjXjX, in which elementary geometric and probabilistic quantities coincide.

Note that we need to have Sm_x embedded in a larger space to get the notion of

normal component, which is connected to expectation.
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