A LOCAL STRONG \(UV^\infty \)-PROPERTY
OF THE HOMEOMORPHISM GROUPS
OF \(R^\infty \) - (\(Q^\infty \))- MANIFOLDS

VO THANH LIEM

Abstract. We will show in this note that if \(M \) is an \(R^\infty \) - (or \(Q^\infty \))- manifold having the homotopy type of a finite complex, then the homeomorphism group of \(M \), endowed with the compact-open topology, has the local strong \(UV^\infty \)-property with respect to the classes of pseudo CW complexes \(\mathcal{C} \mathcal{W}(\mathcal{C}) \) and \(\mathcal{C} \mathcal{W}(\mathcal{M}) \).

Let \(E^\infty = \limdir E^n \) where \(E^n \) is either the \(n \)-Euclidean space or the \(n \)-fold product of the Hilbert cube \(Q \). By an \(E^\infty \)-manifold, we mean a paracompact space which is locally homeomorphic to \(E^\infty \). Given a space \(X \), let \(\text{Homeo}(X) \) denote the group of homeomorphisms of \(X \) endowed with the compact-open topology. Let \(A \) be a subset of \(S \times X \) (or \(X \times S \)), a map \(f: A \to S \times Y \) (or \(f: A \to Y \times S \)) is said to be \(S \)-fiber preserving (\(S \)-f.p.) if \(\pi_S f = \pi_S \) where \(\pi_S \) denotes the projection. Given an \(S \)-f.p. map \(f: S \times X \to S \times Y \), for each \(s \in S \), let \(f_s: X \to Y \) denote the map defined by \(f(x, x) = (s, f_s(x)) \) for each \(x \in X \). By an \(S \)-f.p. isotopy (an \(S \)-f.p. invertible isotopy, resp.) from \(S \times X \) onto \(S \times Y \), we mean an \((I \times S)\)-f.p. map \(f: I \times S \times X \to I \times S \times X \) such that \(f_{t,s} \) is a homeomorphism for each \((t, s) \in I \times S \). \(f \) is an \((I \times S)\)-f.p. homeomorphism, resp.). Given an open cover \(\mathcal{U} \) of \(Y \), a homotopy \(H: I \times X \to Y \) is said to be an \(\mathcal{U} \)-homotopy if for each \(x \in X \) there is an \(U \in \mathcal{U} \) such that \(H(I \times x) \subseteq U \). Two maps \(f, g: X \to Y \) are said to be \(\mathcal{U} \)-close if for each \(x \in X \), there is an \(U \in \mathcal{U} \) such that \(\{ f(x), g(x) \} \subseteq U \). Following [L], let \(\mathcal{C} \mathcal{W}(\mathcal{C}) \) and \(\mathcal{C} \mathcal{W}(\mathcal{M}) \) denote the classes of pseudo CW complexes generated by the class \(\mathcal{C} \) of Hausdorff compact spaces and the class \(\mathcal{M} \) of metric spaces, respectively. If \(A \) is a subset of \(X \), let \(i_A \) denote the inclusion \(A \hookrightarrow X \), and \(\text{id}_X \) the identity of \(X \).

The homeomorphism group \(\text{Homeo}(X) \) of a space \(X \) is said to have the \textit{local strong} \(UV^\infty \)-\textit{property with respect to a class} \(\mathcal{C} \) provided that given an open neighborhood \(U \) of an \(h \in \text{Homeo}(X) \), there is an open neighborhood \(V \) of \(h \) in \(U \) such that if \(\Lambda \in \mathcal{C} \), \(\Gamma \) is a closed \(G_\delta \)-set in \(\Lambda \), and \(g: \Lambda \to V \) is a continuous map with \(g(\Gamma) = \{ h \} \), then \(g \) is homotopic rel \(\Gamma \) in \(V \) to the constant map \(H: V \to \{ h \} \).

If \(M \) is an \(R^\infty \)-manifold, Hale provided in [H] that \(\text{Homeo}(M) \) is Lindelöf, homogeneous, and paracompact, but not compactly generated. In this note, we
intend to study the local contractibility of the groups of homeomorphisms of E^∞-manifolds.

Theorem 1. If M is an E^∞-manifold having the homotopy type of a finite complex, then $\text{Homeo}(M)$ has the local strong UV$^\infty$-property with respect to $\mathcal{CW}(\mathcal{C}) \cup \mathcal{CW}(\mathcal{M})$.

Note that if $M = \tilde{D} \times E^\infty$ where \tilde{D} is the open disk with infinitely many handles attached (refer to [R, p. 275]), then $\text{Homeo}(M)$ is not locally path-connected.

Let us introduce some notations that will be used in the following proofs. All spaces are Hausdorff. M is a given E^∞-manifold having the homotopy type of a compact subpolyhedron A of an R^m. Let N be a regular neighborhood of A in R^m [Hd] and identify M with $N \times E^\infty$ [He, Theorem C] and N with $N \times 0$ in $N \times E^\infty$. Referring to [H-T], write $M = \text{dlirm}_j M_j$ where $M_j = N \times B_{j+1}$ and B_j denotes the s-fold product of $[-s,s]$ (Q, resp.) if $E = R$ (if $E = Q = \prod_{i=0}^{\infty}[0,1]$, resp.). Given a positive integer s and a sequence $\{\epsilon_s, \epsilon_{s+1}, \ldots\}$ of positive numbers, we write $E^\infty(\epsilon_s, \epsilon_{s+1}, \ldots) = \{x \in E^\infty \mid x_1 = \cdots = x_{s-1} = 0 \text{ and } d(x_j, 0) < \epsilon_j \text{ for } j = s, s + 1, \ldots\}$.

Given a compact subset K of M and an open set V of M, following [D] let $[K, V]$ denote the set $\{f \in \text{Homeo}(M) \mid f(K) \subset V\}$; this is a member of a subbasis for the compact-open topology on $\text{Homeo}(M)$. We will work with the category \mathcal{G} of compactly generated spaces [G]. For $X, Y \in \mathcal{G}$, by $X \times Y$ we mean the \mathcal{G}-product of X and Y. Recall that $\mathcal{CW}(\mathcal{C}) \cup \mathcal{CW}(\mathcal{M})$ is a subclass of \mathcal{G} [L]; moreover, that if $\Lambda \in \mathcal{CW}(\mathcal{C}) \cup \mathcal{CW}(\mathcal{M})$, then so does $I \times \Lambda$.

Lemma 2. Let Γ be a closed subset of $\Lambda \in \mathcal{CW}(\mathcal{C}) \cup \mathcal{CW}(\mathcal{M})$ and q a nonnegative integer. Let $f, g: \Lambda \times M \to \Lambda \times M$ be Λ-f.p. maps such that $f|\Gamma \times M = g|\Gamma \times M$ and such that there is a Λ-f.p. homotopy ϕ from $f|\Lambda \times M_q$ to $g|\Lambda \times M_q$ (rel $\Gamma \times M_q$). Then, ϕ can be extended to a Λ-f.p. homotopy ψ from f to g (rel $\Gamma \times M$). Moreover, if g is a Λ-f.p. homotopy equivalence, then $\psi: I \times \Lambda \times M \to I \times \Lambda \times M$, defined by $\psi(t, \lambda, z) = (t, \psi(t, \lambda, z))$, is an $(I \times \Lambda)$-f.p. homotopy equivalence.

Proof. Let $A = (I \times \Lambda \times M_q) \cup (I \times \Gamma \times M) \cup \{(0,1) \times \Lambda \times M\}$ and $\overline{\phi}: A \to \Lambda \times M$ be the extension of ϕ defined by

$$
\overline{\phi}(t, \lambda, x) = \begin{cases}
\phi(t, \lambda, x) & \text{if } x \in M_q, \\
f(\lambda, x) = g(\lambda, x) & \text{if } \lambda \in \Gamma, \\
f(\lambda, x) & \text{if } t = 0, \\
g(\lambda, x) & \text{if } t = 1.
\end{cases}
$$

Since M_q is the strong deformation retract of M, we have a homotopy $\theta: M \times I \to M$ such that $\theta_0 = \text{id}$, $\theta_1(M) = M_q$ and $\theta_t|M_q = \text{id}$ for each $t \in I$. Then, $\overline{\theta} = \text{id} \times \theta: I \times \Lambda \times M \times I \to I \times \Lambda \times M$ is an $(I \times \Lambda)$-f.p. homotopy such that $\overline{\theta}_0 = \text{id}$, $\overline{\theta}(A \times I) \subset A$, and $\overline{\theta}_1: I \times \Lambda \times M \to I \times \Lambda \times M_q$ is a $(I \times \Lambda)$-f.p. retraction. Observe that $\phi = \overline{\phi}\overline{\theta}_0|A$ is Λ-f.p. homotopic to $\overline{\phi}\overline{\theta}_1|A = \phi\overline{\theta}_1|A$ and $\phi\overline{\theta}_1|A$ has the
A local strong \(UV^\infty \)-property

By [L, Lemma 1.1], \(\phi \) has also a \(\Lambda \)-f.p. extension \(\psi : I \times \Lambda \times M \rightarrow \Lambda \times M \). This \(\psi \) is a wanted extension of \(\phi \).

Finally, it is easy to prove that \(\hat{\psi} \) is \((I \times \Lambda)\)-f.p. homotopic to \(\text{id}_I \times g : I \times \Lambda \times M \rightarrow I \times \Lambda \times M \). Therefore, \(\hat{\psi} \) is an \((I \times \Lambda)\)-f.p. homotopy equivalence if \(g \) is a \(\Lambda \)-f.p. homotopy equivalence.

Proof of Theorem 1. Since it is straightforward to verify that the translation map is a homeomorphism of \(\text{Homeo}(M) \) (or refer to [H]), we only need to show that \(\text{Homeo}(M) \) has the local \(UV^\infty \)-property at \(\text{id}_M \). Let \(U \) be a given neighborhood of \(\text{id}_M \) in \(\text{Homeo}(M) \) of the form \(\bigcap \{ [K_i, \Omega_i] | i = 1, \ldots, p \} \) where \(K_i \) is a compact subset of the open subset \(\Omega_i \) in \(M \) for each \(i \).

Definition of \(V \). Without loss of generality, we can assume that \(K_1 \cup \cdots \cup K_p \subset M_0 \) [Ha, Lemma 2.4]. Then, since \(M_0 \) is locally convex, there is a finite cover \(\mathcal{A} \) of \(M_0 \) consisting of convex open sets in \(M_1 \) such that

(a) \(\text{For } E = R, \text{ if } A \in \mathcal{A} \text{ with } A \cap M_0 \neq \emptyset, \text{ then } A \subset N \times \text{Int } B_2. \)

(b) \(\text{If } A \in \mathcal{A} \text{ with } A \cap K_i \neq \emptyset, \text{ then its closure } \overline{A} \subset \Omega_i. \)

Note that any two \(\mathcal{A} \)-close maps into \(M_1 \) are canonically \(\mathcal{A} \)-homotopic. Let \(\delta > 0 \) be a Lebesgue number for the open cover \(\{ A \cap M_0 | A \in \mathcal{A} \} \) of \(M_0 \), and let \(\mathcal{F} \) be a finite closed cover of \(M_0 \) each of whose members has diameter less than \(\delta \). Since the union \(\bigcup \{ \overline{A} | A \in \mathcal{A} \text{ and } \overline{A} \subset \Omega_i \} \) is compact for each \(i = 1, \ldots, p \), there is a sequence of positive numbers \(\varepsilon_2, \varepsilon_3, \ldots \) such that for each \(i = 1, \ldots, p \) if \(\overline{A} \subset \Omega_i \), then \(A \times E_{(\varepsilon_2, \varepsilon_3, \ldots)} \subset \Omega_i. \) Now, for each \(C \in \mathcal{F}, \) since \(\text{diam}(C) < \delta \), there is an \(A \in \mathcal{A} \) such that \(C \subset A \). Define

\[V = \bigcap \{ (A \times E_{(\varepsilon_2, \varepsilon_3, \ldots)} | C \in \mathcal{F}) \}. \]

(For each \(C \in \mathcal{F}, \) \(A \times E_{(\varepsilon_2, \varepsilon_3, \ldots)} \) is an open set in \(M \) by use of (a).) Observe that \(V \) is an open neighborhood of \(\text{id}_M \) in \(U \). Let \(f \in V \). Fix an \(i \) \((i = 1, \ldots, p)\) and let \(x \in K_i. \) Then, there is a \(C \in \mathcal{F} \) such that \(x \in C. \) So, \(A \cap K_i \neq \emptyset; \) consequently, it follows from (b) that \(C \subset A \subset C \subset \Omega_i. \) Therefore, \(f(K_i) \subset \Omega_i \) for each \(i; \) so, \(f \) \(\in U. \) Moreover, that if \(f \in \text{Homeo}(M), \) \(g \in V \) and \(f \cap M_0 = g \cap M_0, \) then \(f \in V. \)

The local strong \(UV^\infty \)-property. Let \(\Lambda \in \mathcal{CW}(\mathcal{E}) \cup \mathcal{CW}(\mathcal{M}) \) and \(\Gamma \) a closed \(G_\delta \)-set in \(\Lambda. \) Let \(g : \Lambda \rightarrow V \) be a continuous map with \(g(\Gamma) = \{ \text{id}_M \}. \) We will prove that \(g \) is homotopic rel \(\Gamma \) in \(V \) to the constant map \(\text{Id} \) with \(\text{Id}(\Lambda) = \{ \text{id}_M \}. \)

Let \(f : \Lambda \times M \rightarrow \Lambda \times M \) be the \(\Lambda \)-f.p. map associated to \(g, \) defined by \(f_\lambda(z) = g(\lambda)(z) \) for all \((\lambda, z) \in \Lambda \times M, \) where \(\Lambda \times M \) is the \(\mathcal{G}\mathcal{E} \)-product space as used in [L]. Then, \(f \) is continuous by [G, Theorem 8.17]. By [D, Theorem XII.3.1(1)] for the \(\mathcal{G}\mathcal{E} \)-product, we only need to prove that there is a \(\Lambda \)-f.p. isotopy (rel \(\Gamma \times M \)) \(F : I \times \Lambda \times M \rightarrow I \times \Lambda \times M \) with \(F_0 = f, \) \(F_1 = \text{id}_{\Lambda \times M} \) and \(F_{(t, \lambda)} \in V \) for each \((t, \lambda) \in I \times \Lambda. \)

We will define by induction a sequence \(\{ F^n | n = 1, 2, \ldots \} \) of \(\Lambda \)-f.p. invertible isotopies of \(\Lambda \times M \) such that

(0) \(F^1_1 = \text{id}_M \) and \(F^1_{(t, \lambda)} \in V \) for each \((t, \lambda) \in I \times \Lambda, \)

(1) \(F^n_1 = F^{n-1}_0 (n > 1), \)

(2) \(F^n_0 | \Lambda \times M_{n-1} = f | \Lambda \times M_{n-1} (n > 0), \)

(3) \(F^n_0 | \Lambda \times M_{n-2} = f | \Lambda \times M_{n-2} \) for each \(t \in I, n > 1, \) and

(4) \(F^n_0 | \Gamma \times M = \text{id}_{\Gamma \times M}. \)
Next, define \(F: I \times \Lambda \times M \to I \times \Lambda \times M \) by

\[
F(t, \lambda, z) = \begin{cases}
(0, f(\lambda, z)) & \text{if } t = 0, \\
(t, F^n(2^n t - 1, \lambda, z)) & \text{if } 1/2^n \leq t \leq 1/2^{n-1}.
\end{cases}
\]

Then, \(F \) will be an \((I \times \Lambda)\)-f.p. isotopy. It is well defined by \((1)_n\) and continuous by \((2)_n\), \((3)_n\) and \(I \times \Lambda \times M = \text{dirlim}(I \times \Lambda \times M_n) \) [L, Lemma 0.3]. It also is clear that \(F_0 = f \) and that \(F_1 = F^1_{i\Lambda \times M} \) by \((0)\). Moreover, each \(F_{t, \lambda} \in V \) by use of \((0)\) and \((3)_n\). Therefore, the proof will be complete. (Note that \(F \) is not necessary an invertible isotopy.)

First, let \(H: I \times \Lambda \times M_0 \to \Lambda \times M \) be the straight-line homotopy from \(f \mid \Lambda \times M_0 \) to \(i_{\Lambda \times M_0} \). Observe that \(H \) is a \(\Lambda \)-f.p. homotopy rel \(\Gamma \times M_0 \) with \(H(t \times \lambda \times C) \subset A_C \times E(\epsilon_2, \epsilon_3, \ldots) \) for each \(C \in \mathcal{C} \). Let \(\hat{H}: I \times \Lambda \times M_0 \to I \times \Lambda \times M \) be the \((I \times \Lambda)\)-f.p. map defined by \(\hat{H}(t, \lambda, x) = (t, H(t, \lambda, x)) \). By [L, Lemma 1.2], we can assume that \(\hat{H} \) is an \((I \times \Lambda)\)-f.p. embedding. Moreover, following the proof of [L, Lemma 1.2], to adjust only the \(E(\epsilon_2, \epsilon_3, \ldots) \)-component of \(\hat{H} \) (rel \(\partial I \times \Lambda \times M_0 \)), we can assume that \(\pi_{\Lambda \times M} \hat{H} \) is still a \(\Lambda \)-f.p. homotopy rel \(\Gamma \times M_0 \) with

\[
\pi_{\Lambda \times M} \hat{H}(t \times \lambda \times C) \subset A_C \times E(\epsilon_2, \epsilon_3, \ldots)
\]

for each \(C \in \mathcal{C} \). By Lemma 2, \(\hat{H} \) has an \((I \times \Lambda)\)-f.p. homotopy-equivalence extension \(\hat{\psi}^1: I \times \Lambda \times M \to I \times \Lambda \times M \) such that

\[
\begin{align*}
(a)_1 \hat{\psi}^1_2 &= \text{id}_{\Lambda \times M}, \\
(b)_1 \hat{\psi}^0_0 &= f, \text{ and} \\
(c)_1 \hat{\psi}^0_1|\Gamma \times M &= i_{\Gamma \times M} \text{ for each } t \in I.
\end{align*}
\]

Therefore, by [L, Lemma 3.3], there is an \((I \times \Lambda)\)-f.p. homeomorphism \(F^1 \) of \(I \times \Lambda \times M \) such that \(F^1 \) is an extension of \(\hat{\psi}^1|\{I \times \Lambda \times M_0\} \cup \{I \times \Gamma \times M\} \cup \{1 \times \Lambda \times M\} \). Now, the properties \((2)_1, (4)_1\) follow from \((b)_1\) and \((c)_1\), respectively. To verify \((0)\), it is clear that \(F^1_0 = \text{id}_{\Lambda \times M} \) by \((a)_1\), and that \(F^1_{t, \lambda} \in V \) by \((*)\) since \(\hat{\psi}^1 \) is an extension of \(\hat{H} \).

Second, consider \(f \) and \(F^0_0 \). Since \(f \mid \Lambda \times M_0 = F^0_0 \mid \Lambda \times M_0 \), by use of Lemma 2, we can obtain a \(\Lambda \)-f.p. homotopy \(\phi: f \mid \Lambda \times M_1 = F^0_0 \mid \Lambda \times M_1 \) rel \(\{\Gamma \times M_1\} \cup \{\Lambda \times M_0\} \). By [L, Lemma 1.2], we can assume that \(\phi: I \times \Lambda \times M_1 \to I \times \Lambda \times M \), defined by \(\phi(t, \lambda, z) = (t, \phi(t, \lambda, z)) \), is an \((I \times \Lambda)\)-f.p. embedding. By Lemma 2, \(\hat{\phi} \) has an \((I \times \Lambda)\)-f.p. homotopy equivalence extension \(\hat{\psi}^2: I \times \Lambda \times M \to I \times \Lambda \times M \) such that

\[
\begin{align*}
(a)_2 \hat{\psi}^2_1 &= F^1_0, \\
(b)_2 \hat{\psi}^0_0 &= f, \text{ and} \\
(c)_2 \hat{\psi}^0_1|\Gamma \times M &= i_{\Gamma \times M}.
\end{align*}
\]

Then, by [L, Lemma 3.3], there is an \((I \times \Lambda)\)-f.p. homeomorphism \(F^2 \) of \(I \times \Lambda \times M \) such that \(F^2 \) is an extension of \(\hat{\psi}^2|\{I \times \Lambda \times M_1\} \cup \{I \times \Gamma \times M\} \cup \{1 \times \Lambda \times M\} \). The properties \((1)_2, (2)_2\) and \((4)_2\) follow from \((a)_2, (b)_2\) and \((c)_2\), respectively. The property \((3)_2\) holds true since \(\hat{\psi}^2 \) is an extension of \(\hat{\phi} \).

Finally, in a similar manner, we can define a wanted \((I \times \Lambda)\)-f.p. homeomorphism \(F^n \) of \(I \times \Lambda \times M \) when an appropriate invertible isotopy \(F^{n-1} \) has already been defined. Therefore, the proof is complete.

The author wishes to thank the referee for his suggestion to simplify the proof of Lemma 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486