AN EXAMPLE OF A FAKE s-MANIFOLD WITH A NICE
LOCALLY CONTRACTIBLE COMPACTIFICATION

PHILIP L. BOWERS1

ABSTRACT. An example is constructed of a topologically complete separable
AR X that satisfies the discrete n-cells property for each nonnegative integer n
but fails to satisfy the discrete approximation property and be homeomorphic
to s even though X arises as the complement of a σ-Z-set in a locally con-
tractible compactum. Such examples are not possible in the setting of ANR
compactifications.

1. Introduction. The purpose of this note is to present a simple example of a
fake s-manifold that shows that the main result of [Bow1] cannot be generalized
from the setting of absolute neighborhood retracts (ANR) to the setting of locally
contractible spaces. The main result of [Bow1] is that a space X satisfying the
discrete n-cells property for each nonnegative integer n is equivalent to the space
satisfying the discrete approximation property, provided X arises as the comple-
ment of a σ-Z-set in a locally compact separable ANR. That some extra hypothesis
on X is necessary is shown by examples constructed in [BBMW] of topologically
complete separable ANR's that satisfy the discrete n-cells property for each nonneg-
ative integer n yet fail to satisfy the discrete approximation property and fail to
be s-manifolds. We apply the technique developed in [BBMW] to construct our
example, the starting point of which is Borsuk's construction [Bor, Hu] of a locally
contractible compactum that is not an ANR.

A map is a continuous function and idX denotes the identity map on a space X.
A closed subset A of a separable metric space X is a Z-set in X, provided for every
open cover U of X there exists a map α: X → X − A close to idX. The subset A
is a strong-Z-set, provided, in addition, the map α can be chosen so that the image
of α misses a neighborhood of A. If X happens to be locally compact as well, then
Z-sets are always strong-Z-sets; however, this is not true in general [BBMW].
A countable union of Z-sets is called a σ-Z-set. For a nonnegative integer n, a
space X is said to satisfy the discrete n-cells property if for each countable family
of maps fi: In → X, i = 1, 2, ..., of the n-cell to X and open cover U of X, there
are U-approximations gi: In → X, i = 1, 2, ..., such that the collection {gi(In)}i=1
is discrete (each point in X has a neighborhood that meets at most one member
of the collection). A space X is said to satisfy the discrete approximation property
if for each countable family of maps fi: I∞ → X, i = 1, 2, ..., of the Hilbert cube
to X and open cover U of X, there are U-approximations gi: I∞ → X, i = 1, 2, ...,;
such that the collection {gi(I∞)}i=1 is discrete. For the importance of the discrete

1 Research partially supported by a summer research grant from The Florida State University
and by ONR Grant N00014-84-K-0761.

©1986 American Mathematical Society
0002-9939/86 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
properties in the topology of s-manifolds (manifolds modeled on s, the countably
infinite product of open intervals (0, 1)), see [BBMW, To, Bowi].

I am indebted to Tadeusz Dobrowolski for asking me whether or not the main
result of [Bowi] holds in the setting in which he was working, that of locally
contractible spaces. Also, I express my sincere appreciation to Doug Curtis for his
(as always) helpful advice and suggestions.

2. The example. For a point x in the Hilbert cube $I^\infty = \prod_{i=1}^{\infty}[0, 1]$, $x(i)$
denotes the i'th coordinate of x. Let $B_\infty = \{x \in I^\infty \mid x(1) = 0\}$, which is a
homeomorphic copy of the Hilbert cube, and for each positive integer k let B_k be
the k-cube contained in I^∞ that consists of the points $x \in I^\infty$ that satisfy
\[\frac{1}{k+1} \leq x(1) \leq \frac{1}{k}, \quad x(i) = 0 \quad \text{for } i > k. \]

Define subspaces C and ∂C of I^∞ as follows:
\[C = B_\infty \cup B_1 \cup B_2 \cup \cdots, \quad \partial C = \partial B_1 \cup \partial B_2 \cup \cdots, \]
where ∂B_k denotes the boundary $(k - 1)$-sphere of B_k. The subspace $B_\infty \cup \partial C$
is Borsuk's example of a locally contractible compactum that is not an ANR
[Bor, Hu]. Let D be the following subspace of $I^\infty \times [0, 1]$
\[D = (C \times \{0\}) \cup (\partial C \times [0, 1]). \]

D is a topologically complete separable AR (by [KL or Hy]) and $B = B_\infty \times \{0\}$
is a Z-set in D. In fact, the same arguments used in [BBMW, §5] show that there
is an instantaneous deformation of D into $D - B$ and that B, though a Z-set,

\[\text{Observe that } D \text{ has a locally contractible compactification, namely } \bar{D} = D \cup
(B_\infty \times [0, 1]), \text{ and the difference } \bar{D} - D = B_\infty \times (0, 1) \text{ is a } \sigma\text{-Z-set in } \bar{D}. \text{ The latter part of the previous statement follows since there are small retractions of } C \text{ onto
subsets of the form } B_k \cup B_{k-1} \cup \cdots \cup B_1 \text{ that restrict to retractions of } B_\infty \cup \partial C \text{ onto } (B_k \cup B_{k-1} \cup \cdots \cup B_1) \cap \partial C. \]

The example referred to in the Introduction is gotten by taking the product of
D and s reduced about B, denoted $(D \times s)_B$. $(D \times s)_B$ is the set $[(D - B) \times s] \cup B$
equipped with the topology generated by open subsets of $(D - B) \times s$ and sets of the form $((U - B) \times s) \cup (U \cap B)$, where $U \subset D$ is open. $(D \times s)_B$ is a topologically
complete separable AR [BBMW, §1], and B is a Z-set in $(D \times s)_B$ but not a
strong-σ-set [BBMW, Corollary 1.2]. It then follows from [Bow2, Lemma 1, §4]
that $(D \times s)_B$ does not have a nice ANR local compactification in the sense that
$(D \times s)_B$ does not arise as the complement of a σ-σ-set in a locally compact ANR;

\[\text{however, } (D \times s)_B \text{ does have a nice locally contractible compactification.} \]

For the proof of the claims of the example, we need the following lemma, whose
proof involves a straightforward construction and is left as an exercise for the reader.
2.2. **Lemma.** Let \(\alpha \) and \(\beta \) be positive integers and \(0 < t < 1/2 \). Define an \(\alpha \)-cell \(J^\alpha \) contained in the \((\alpha + \beta)\)-cell \(I^{\alpha + \beta} = [0,1]_1 \times \cdots \times [0,1]_{\alpha + \beta} \) by

\[
J^\alpha_t = [t,1-t]_1 \times \cdots \times [t,1-t]_{\alpha} \times \{1/2\}_{\alpha+1} \times \cdots \times \{1/2\}_{\alpha+\beta}.
\]

Then there exists a retraction \(r: (I^{\alpha + \beta} - J^\alpha_t) \to \partial I^{\alpha + \beta} \) such that \(r \) moves the last \(\beta \) coordinates freely while moving the first \(\alpha \) coordinates by no more than \(t \). More precisely, let \(p_i: I^{\alpha + \beta} \to [0,1]_i \) be the \(i \)th coordinate projection. Then \(|p_i(x) - p_i(r(x))| \leq t \) for each point \(x \) in \(I^{\alpha + \beta} - J^\alpha_t \) and each \(i \in \{1, \ldots, \alpha\} \).

Proof of 2.1. First, if \((D \times s)_B\) satisfies the discrete approximation property, then \(Z \)-sets are strong-\(Z \)-sets [BBMW, Proposition 1.3], contradicting the fact that the \(Z \)-set \(B \) is not a strong-\(Z \)-set in \((D \times s)_B\). To show that \((D \times s)_B\) satisfies the discrete \(n \)-cells property for each \(n \), it suffices to show that, given a positive number \(\varepsilon \) and a nonnegative integer \(n \), any countable family of maps \(f_1, f_2, \ldots \) of the \(n \)-cell \(I^n \) into \(D \) has \(3\varepsilon \)-approximations \(g_1, g_2, \ldots \) whose images miss a neighborhood of \(B \) and for which \(f_i = g_i \) on \(f_i^{-1}(D - \varepsilon(B)) \) for each \(i \), where \(\varepsilon(B) \) denotes the \(\varepsilon \)-neighborhood of \(B \) in \(D \). Choose a positive integer \(m \) so large that, for all \(k > m \), \((B_k \times \{0\}) \cup (\partial B_k \times [0,1/m])\) is contained in \(\varepsilon(B) \) and, recalling that \(D \subset I^\infty \times [0,1] \), so that any move in \(D \) that affects only coordinates greater than \(m \) moves points at most \(\varepsilon \). Since \(B \) is a \(Z \)-set in \(D \), we may assume that the image of each \(f_i \) misses \(B \). Fix a positive integer \(\alpha > m \) and let \(h: B_{\alpha + n + 1} \times \{0\} \to I^{\alpha + n + 1} \) be the obvious linear homeomorphism induced by the linear homeomorphism \([1/(\alpha + n + 2), 1/(\alpha + n + 1)] \to [0,1]\) between the first factors. Choose \(t \) so small that if \(r \) denotes the retraction of \(\alpha \)-cell \(J^\alpha_t \), then \(d(h^{-1} \circ r \circ h(x)) \leq 2\varepsilon \). Since \(I^n \) is \(n \)-dimensional, we assume that the image of each \(f_i \) misses \(h^{-1}(J^\alpha_t) \), and by applying \(h^{-1} \circ r \circ h \) we obtain \(2\varepsilon \)-approximations \(f'_i \) to \(f_i \) such that \(f'_i(I^n) \cap B_{\alpha + n + 1} \times \{0\} \) is contained in \(\partial B_{\alpha + n + 1} \times \{0\} \) for each \(i \). For a positive integer \(k \), let \(C_k = B_\infty \cup B_k \cup B_{k+1} \cup \cdots \), and let \(\partial C_k = C_k \cup \partial D \). Letting \(\alpha \) range over all positive integers greater than \(m \), we obtain \(2\varepsilon \)-approximations \(g'_i \) to \(f'_i \) such that \(g'_i(I^n) \cap (C_{m+n+3} \times \{0\}) \) is contained in \(\partial C_{m+n+3} \times \{0\} \). A final move in the \([0,1]\)-direction of \(D \) produces approximations \(g_i \) so that for each \(i \), the image of \(g_i \) misses \((C_{m+n+3} \times \{0\}) \cup (\partial C_{m+n+3} \times [0,1/2m]) \), a neighborhood of \(B \) in \(D \).

We now show that \((D \times s)_B\) has a nice locally contractible compactification. Recall that \(D = D \cup (B_\infty \times [0,1]) \). The reduced product \((\overline{D} \times I^\infty)_B\) contains \((D \times s)_B\) as a dense subspace, and it is easy to show that since \(\overline{D} \) is locally contractible, \((\overline{D} \times I^\infty)_B \) is a locally contractible compactum. Since \(B_\infty \times (0,1] \) is a \(\sigma \)-\(Z \)-set in \(\overline{D} \) and \(B(I^\infty) = I^\infty - s \) is a \(\sigma \)-\(Z \)-set in \(I^\infty \), it follows that

\[
(\overline{D} \times I^\infty)_B - (D \times s)_B = (\overline{D} - B) \times I^\infty - (D - B) \times s
= (B_\infty \times (0,1]) \times I^\infty \cup ((\overline{D} - B) \times B(\infty))
\]

is a \(\sigma \)-\(Z \)-set in \((\overline{D} \times I^\infty)_B \). The only difficulty is in showing that a set of the form \((B_\infty \times [t,1]) \times I^\infty \) for \(0 < t < 1 \) is a \(Z \)-set in \((\overline{D} \times I^\infty)_B \). For an open neighborhood \(U \) of \(B \) in \(\overline{D} \), let \(\theta \) be a Urysohn function with \(\theta = 0 \) on \(\overline{D} - U \) and \(\theta = 1 \) on \(B \), and let \(H \) be a contraction of \(I^\infty \) to a point with \(H_0 = \text{id}_{I^\infty} \) and \(H_1 \) constant. Let \(p: \overline{D} \times I^\infty \to (\overline{D} \times I^\infty)_B \) denote the obvious projection map, and let \(r: \overline{D} \to \overline{D} \) be a
small map for which \((B_\infty \times [0, 1]) \cap r(D) = \emptyset\). Let \(q: D \times I^\infty \to D \times I^\infty\) be the map defined by \(q(d, t) = (r(d), H(t, \theta(d)))\) for \((d, t) \in D \times I^\infty\) and observe that since \(p\) is a quotient map and \(q \circ p^{-1}\) is single valued, \(f = p \circ q \circ p^{-1}\) is a well-defined map of \((D \times I^\infty)_B\) into \((D \times I^\infty)_B\) whose image misses \((B_\infty \times (0, 1]) \times I^\infty\). If \(U\) is a small enough neighborhood of \(B\) and \(r\) is close enough to \(id_B\), then \(f\) will be as close to the identity on \((D \times I^\infty)_B\) as we wish; hence, \((B_\infty \times [t, 1]) \times I^\infty\) is a \(Z\)-set in \((D \times I^\infty)_B\).

REFERENCES

Department of Mathematics, The Florida State University, Tallahassee, Florida 32306-3027