A NOTE ON TWIST SPUN KNOTS

JOSÉ MARÍA MONTESINOS

ABSTRACT. A movie presentation for the twist spun knots of an arc is given.

Some time ago Francisco González-Acuña asked me for a movie presentation of the twist spun knots defined and studied by Zeeman [Z]. Since then, other low dimensional topologists have posed the same question to me. Perhaps the following easy solution may have some interest.

LEMMA. Let K be the knot in plat presentation of Figure 1 where x belongs to the braid group B_{2m+1}. Then the n-twist spun knot of K is given by the diagram of Figure 2.

REMARK. In Figure 2 we use Lomonaco’s notation [L]. The diagram of Figure 3(a) is explained in Figure 3(b). The critical saddle point occurs at level $t = \theta$.

Figure 1.

Figure 2.

Figure 3.

Received by the editors June 11, 1985.

1980 Mathematics Subject Classification. Primary 57Q45; Secondary 57M25.

Key words and phrases. Twist spun knot, plat, braid, slice knot.

1Research supported in part by “Comité Conjunto Hispano-Norteamericano” and NSF Grant 8120790.
PROOF. By deleting the interior of a regular neighborhood of a point in \(K \) we obtain a pair \((B^3, B^3 \cap K)\) which we denote by \((\tilde{B}^3, \tilde{K})\). Consider the height function \(f: B^3 \to [-1,1] \) of Figure 4.

Let \(t \in [0,1] \) be the parameter measuring the spinning process of \(B^3 \) so that at time \(t = 1 \) the ball arrives to its original position. Assume that the twisting of \(\tilde{K} \) occurs during the interval \([\frac{1}{2}, 1]\).

We want a movie of the \(n \)-twist spun knot \(\tilde{K}_n \) of \(K \) with respect to "hyperplane" sections \(S^3_r, r \in (-1,1) \), where \(S^3_r \) is the result of spinning the subset \(f^{-1}(r) \) of \(B^3 \). For \(r \in \{-1,1\}, f^{-1}(r) \) is just a point.

To achieve this we first define an isotopy of \(S^4 \) which places the saddle points of \((f \times id)|\tilde{K}_n\) in the level \(S^3_0 \). This isotopy is defined in three steps.

Step 1. Consider the model halfball \(D^3 \) and the set \(A \) of \(m + 1 \) arcs shown in Figure 5(a). There is an isotopy \(g: A \times I \to D^3 \) which pushes \(m \) arcs of \(A \) onto the boundary. In Figure 5(b) we see the images of \(A \) for some values of the parameter.
Step 2. Let B_+^3 and B_-^3 be the halfballs $f^{-1}[0,1]$ and $f^{-1}[0,-1]$ of B^3. Let F_+ and F_- be homeomorphisms $F_{\pm} : (D^3, A) \to (B_+^3, B_-^3 \cap \bar{K})$ and define isotopies $g_{\pm} : \bar{K} \times I \to B^3$ as follows: g_{\pm} is the identity map in $(B_+^3 \cap \bar{K}) \times t$, $t \in I$, and equals $F_{\pm}g_{\pm}^{-1}$ in $(B_-^3 \cap \bar{K}) \times I$. We embed g_{\pm} in ambient isotopies $G_{\pm} : B^3 \times I \to B^3$. Note that $G_-((B_-^3 \cap \bar{K}) \times 1)$ is the set of arcs b together with the point c of Figure 6, if we think of F_- as the identity map. Under this condition the set $G_+((B_+^3 \cap \bar{K}) \times 1)$
is the image of \(b \cup c \) under the action of \(x^{-1} \in B_{2m+1} \) on \((f^{-1}(0), f^{-1}(0) \cap \bar{K}) \). In Figure 7 we show the case \(x = \sigma_2^{-1}\sigma_4^{-1}\sigma_3\sigma_2^{-1} \).

Step 3. We now define an isotopy of \(S^4 \). This isotopy connects the identity map with a map \(h: S^4 \rightarrow S^4 \) defined as follows. The map \(h \) realizes \(G_+ \) when we spin \(B^3 \) between \(t = 0 \) and \(t = 1/12 \), it is constant for \(t \in \left[\frac{1}{12}, \frac{3}{12} \right] \), and undoes \(G_+ \) between \(t = 2/12 \) and \(t = 3/12 \). After that, \(h \) does \(G_- \) in \(\left[\frac{3}{12}, \frac{4}{12} \right] \), is constant in \(\left[\frac{4}{12}, \frac{5}{12} \right] \) and undoes \(G_- \) in \(\left[\frac{5}{12}, \frac{6}{12} \right] \). During \([\frac{1}{2}, 1] \) \(h \) is the identity map. In Figure 8 we see \(h((B^3 \cap \bar{K}) \times \left[\frac{3}{12}, \frac{6}{12} \right]) \).

The knot \(h(K_n) \) is ambient isotopic to \(K_n \) but all its saddle points with respect to \(f \times \text{id} \) are at level \(S^3_{0} \). We only need to understand \(S^3_{0} \cap h(K_n) \). The pair \((S^3_{0}, S^3_{0} \cap h(K_n))\) is the union of the result of spinning \((f^{-1}(0), f^{-1}(0) \cap \bar{K}) \) during \(t \in [0, \frac{1}{2}] \), with the result of spinning \(x^{-1}(b \cup c) \) during \(t \in \left[\frac{1}{12}, \frac{2}{12} \right] \), with the result of spinning \(b \cup c \) during \(t \in \left[\frac{4}{12}, \frac{5}{12} \right] \), with the result of \(n \)-twist spinning \((f^{-1}(0), f^{-1}(0) \cap \bar{K}) \) during \(t \in \left[\frac{1}{2}, 1 \right] \). The picture for \(\bar{K} \) given by \(x = \sigma_2^{-1}\sigma_4^{-1}\sigma_3\sigma_2^{-1} \) is in Figure 9.

![Figure 9](image)
We have that \((S^3_0, S^3_0 \cap h(K_n))\) is a torus link with \(2m + 1\) trivial components and \(n\)-full twists, together with two sets of bands which correspond to the saddle points. By shrinking the bands with middle lines \(x^{-1}(b \cup c)\) suitably we see that Figure 9 becomes Figure 10.

COROLLARY. The torus link \(\{(2m + 1)n, 2m + 1\}\) is a slice of a trivial knot in \(S^4\). Links of the form depicted in Figure 11(b) have the same property.

PROOF. For the first part take \(x \in B_{2m+1}\) such that \(K\) is a trivial knot. For the second part, remember that the 1-twist spun knot of \(K\) is trivial \([Z]\).

REFERENCES

(a) \(K\) is a knot
(b) \(-K\) is the mirror image

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 1000 CENTENNIAL DRIVE, BERKELEY, CALIFORNIA 94720

Current address: Facultad de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain