Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some classes of orthogonal polynomials associated with martingales


Author: Philip Feinsilver
Journal: Proc. Amer. Math. Soc. 98 (1986), 298-302
MSC: Primary 60G46; Secondary 33A65
DOI: https://doi.org/10.1090/S0002-9939-1986-0854037-1
MathSciNet review: 854037
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classes of orthogonal polynomials which arise as iterated stochastic integrals of a process with stationary independent increments are discussed. They are classes of Meixner polynomials.


References [Enhancements On Off] (What's this?)

  • [1] M. Arbib, Hitting and martingale characterizations of one-dimensional diffusion, Z. Wahrsch. Verw. Gebiete 4 (1965), 232-247. MR 0192551 (33:776)
  • [2] T. S. Chihara, An introduction to orthogonal polynomials, Math. Appl., No. 13, Gordon and Breach, 1978. MR 0481884 (58:1979)
  • [3] C. F. Dunkl, Orthogonal polynomials and a Dirichlet problem related to the Hilbert transform, Indag. Math. 47 (1985), 147-171. MR 799077 (87b:47029)
  • [4] M. Emery, Stabilité des solutions des équations différentielles stochastiques, application aux intégrales multiplicatives stochastiques, Z. Wahrsch. Verw. Gebiete 41 (1978), 241-262. MR 0464400 (57:4330)
  • [5] P. Feinsilver, Special functions, probability semigroups and Hamiltonian flows, Lecture Notes in Math., vol. 696, Springer-Verlag, Berlin and New York, 1978. MR 520914 (80c:60093a)
  • [6] -, Canonical representation of the Bernoulli process, in Probability Measures on Groups, Lecture Notes in Math., vol. 928, Springer-Verlag, Berlin and New York, 1982, pp. 90-95. MR 669064 (84f:60098)
  • [7] T. Hida, Brownian motion, Springer-Verlag, Berlin and New York, 1980. MR 562914 (81a:60089)
  • [8] T. F. Lin, Multiple integrals of a homogeneous process with independent increments, Ann. Probab. 9 (1981), 529-532. MR 614639 (82h:60141)
  • [9] J. Meixner, Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9 (1934), 6-13.
  • [10] P. Meyer, Lectures on stochastic integrals, in Séminaire des Probabilités X, Lecture Notes in Math., vol. 511, Springer-Verlag, Berlin and New York, 1976, pp. 303-320. MR 0431319 (55:4320)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G46, 33A65

Retrieve articles in all journals with MSC: 60G46, 33A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0854037-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society