Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Examples of topological groups homeomorphic to $ l\sp f\sb 2$


Author: Tadeusz Dobrowolski
Journal: Proc. Amer. Math. Soc. 98 (1986), 303-311
MSC: Primary 57N20; Secondary 22A05, 54H15
DOI: https://doi.org/10.1090/S0002-9939-1986-0854038-3
MathSciNet review: 854038
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the following spaces are homeomorphic to $ l_2^f$: (1) the group of piecewise continuous autotransformations of $ [ - 1,1]$ preserving Lebesgue measure, and (2) certain subgroups obtained as group spans of linearly independent arcs in linear spaces. These are consequences of our discussion of the problem whether $ \sigma $-fd-compact locally contractible metric groups must be either finite-dimensional or locally homeomorphic to $ l_2^f$.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pełczynski, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
  • [2] P. L. Bowers, Dense embeddings of nowhere locally compact separable metric spaces, preprint. MR 893799 (88g:54029)
  • [3] D. W. Curtis, Some theorems and examples on local equiconnectedness and its specializations, Fund. Math. 72 (1971), 101-113. MR 0292036 (45:1124)
  • [4] -, Sigma-compact, nowhere locally compact metric spaces can be densly imbedded in Hilbert space, Topology Appl. 16 (1983), 253-257. MR 722118 (85c:54019)
  • [5] -, Boundary sets in the Hilbert cube, Topology Appl. (to appear). MR 804034 (87d:57014)
  • [6] D. W. Curtis, T. Dobrowolski, and J. Mogilski, Some applications of the topological classification of the sigma-compact spaces $ l_{^2}^{\text{f}}$ and $ \Sigma $, Trans. Amer. Math. Soc. 284 (1984), 837-846. MR 743748 (86i:54035)
  • [7] T. Dobrowolski, On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), 555-560. MR 774022 (86e:54023)
  • [8] T. Dobrowolski and H. Toruńczyk, Separable complete ANRs admitting group structures are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. MR 623731 (83a:58007)
  • [9] S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613-622. MR 0007100 (4:87e)
  • [10] P. R. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956. MR 0097489 (20:3958)
  • [11] W. E. Haver, Locally contractible spaces that are absolute retracts, Proc. Amer. Math. Soc. 40 (1973), 280-286. MR 0331311 (48:9645)
  • [12] K. H. Hofmann, Homogeneous locally compact groups with compact boundary, Trans. Amer. Math. Soc. 106 (1963), 52-63. MR 0144320 (26:1866)
  • [13] M. Keane, Contractibility of the automorphism group of a nonatomic measure space, Proc. Amer. Math. Soc. 26 (1970), 420-422. MR 0265555 (42:464)
  • [14] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 0070144 (16:1136c)
  • [15] J. Mogilski, Characterizing the topology of infinite-dimensional $ \sigma $-compact manifolds, Proc. Amer. Math. Soc. 92 (1984), 111-118. MR 749902 (85m:57012)
  • [16] H. Toruńczyk, Concerning locally homotopy negligible sets and characterizations of $ {l_2}$-manifolds, Fund. Math. 101 (1978), 93-110. MR 518344 (80g:57019)
  • [17] -, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. MR 611763 (82i:57016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N20, 22A05, 54H15

Retrieve articles in all journals with MSC: 57N20, 22A05, 54H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0854038-3
Keywords: $ \sigma $-finite-dimensional metric groups, contractible groups, equiconnecting maps, measure preserving transformations, group spans, linearly independent arcs in linear spaces
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society