Property C, refinable maps and dimension raising maps

Authors:
Dennis J. Garity and Dale M. Rohm

Journal:
Proc. Amer. Math. Soc. **98** (1986), 336-340

MSC:
Primary 54F45; Secondary 54C10

DOI:
https://doi.org/10.1090/S0002-9939-1986-0854043-7

MathSciNet review:
854043

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that refinable maps defined on compacta preserve Property C. H. Kato has proved the analogous result for weakly infinite dimensional spaces. We also show that if is a map from a compact space onto a non space , then the set of points in with an uncountable number of preimages is a space that does not have Property C.

**[AG]**D. F. Addis and J. H. Gresham,*A class of infinite-dimensional spaces*. Part I:*Dimension theory and Alexandroff's problem*, Fund. Math.**101**(1978), 195-205. MR**521122 (80b:54041)****[A1]**F. D. Ancel,*The role of countable dimensionality in the theory of cell-like relations*, Trans. Amer. Math. Soc.**287**(1985), 1-40. MR**766204 (86b:54012)****[A2]**F. D. Ancel,*Proper hereditary shape equivalences preserve property*C, Topology Appl.**19**(1985), 71-74. MR**786082 (86g:54026)****[FK]**J. Ford and G. Kozlowski,*Refinable maps on ANR*, Topology Appl.**11**(1980), 247-263. MR**585270 (81j:54017)****[FR]**J. Ford and J. W. Rogers, Jr.,*Refinable maps*, Colloq. Math.**39**(1978), 263-269. MR**522365 (80d:54009)****[Ga]**D. J. Garity,*Property*C*and closed maps*, Topology Appl. (to appear). MR**896868 (88e:54048)****[Gr]**J. H. Gresham,*A class of infinite-dimensional spaces*. Part II:*An extension theorem and the theory of retracts*, Fund. Math.**CVI**(1980), 237-245. MR**585553 (81k:54063)****[H1]**W. E. Haver,*A covering property for metric spaces*, Topology, Conf., Virginia Polytechnic Institute and State University (R. E. Diockman and P. Fletcher, editors), Lecture Notes in Math., vol. 375, Springer-Verlag, New York, 1974, pp. 108-113. MR**0365504 (51:1756)****[H2]**-,*A near selection theorem*, General Topology Appl.**9**(1978), 117-124. MR**503224 (80c:54015)****[K1]**H. Kato,*Refinable maps onto locally**-connected compacta*, Tsukuba J. Math.**4**(1980), 83-88. MR**597685 (82b:54027)****[K2]**-,*Refinable maps in the theory of shape*, Fund. Math.**113**(1981), 119-129. MR**640617 (83a:54048)****[K3]**-,*A note on infinite-dimension under refinable maps*, Proc. Amer. Math. Soc.**88**(1983), 177-180. MR**691304 (84c:54064)****[Ko1]**A. Koyama,*Refinable maps in dimension theory*, Topology Appl.**17**(1984), 247-255. MR**752274 (86d:54056)****[Ko2]**A. Koyama,*Some topics in dimension theory, questions and answers*, Topology**1**(1983), 100-106. MR**722088 (85d:54043)****[Le]**I. M. Leibo,*On closed mappings of infinite dimensional spaces*, Soviet Math. Dokl.**12**(1971), 1111-1113 = Dokl. Akad. Nauk SSSR**199**(1971), No. 3. MR**0284987 (44:2211)****[LM]**I. Loncar and S. Mardesic,*A note on inverse sequences of ANR's*, Glasnik Mat.**3 (23)**(1968), 41-48. MR**0232343 (38:668)****[Pa]**P. R. Patten,*Refinable maps and generalized absolute neighborhood retracts*, Topology Appl.**14**(1982), 183-188. MR**667665 (83k:54012)****[Po]**R. Pol,*A weakly infinite dimensional compactum which is not countable dimensional*, Proc. Amer. Math. Soc.**82**(1981), 634-636. MR**614892 (82f:54059)****[Ro]**D. Röhm,*Hereditary shape equivalences preserve weak infinite dimensionality*, preprint.**[Sk]**E. G. Sklyarenko,*Two theorems on infinite dimensional spaces*, Dokl. Akad. Nauk SSSR**143**(1962), 1053-1056 = Soviet Math. Dokl.**3**(1962), 547-550. MR**0132527 (24:A2367)****[Va]**A. I. Vainstein,*A class of infinite-dimensional spaces*, Mat. Sb.**79 (121)**(1969) = Math. USSR-Sb.**8**(1969), 409-417. MR**0244968 (39:6281)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F45,
54C10

Retrieve articles in all journals with MSC: 54F45, 54C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1986-0854043-7

Keywords:
Property C,
refinable map,
countable dimensional,
weakly infinite dimensional

Article copyright:
© Copyright 1986
American Mathematical Society