Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On square roots of the uniform distribution on compact groups

Authors: Persi Diaconis and Mehrdad Shahshahani
Journal: Proc. Amer. Math. Soc. 98 (1986), 341-348
MSC: Primary 22C05; Secondary 43A05
MathSciNet review: 854044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a compact separable topological group. When does there exist a probability $ P$ such that $ P * P = U$, where $ U$ is Haar measure and $ P \ne U$? We show that such square roots exist if and only if $ G$ is not abelian, nor the product of the quaternions and a product of two element groups. In the course of proving this we classify compact groups with the property that every closed subgroup is normal.

References [Enhancements On Off] (What's this?)

  • [H] H. Behncke, Nilpotent elements in group algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 197–198 (English, with Russian summary). MR 0283582
  • [P] Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069
  • [S] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886
  • [M] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
  • [E] Hewitt and K. Ross, (1963), Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
  • 1. -, (1970), Abstract harmonic analysis. II, Springer-Verlag, Berlin, 1970.
  • [I] Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
  • [S] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
  • [J] Jean-Louis Pascaud, Anneaux de groupes réduits, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A719–A722 (French). MR 0335570
  • [S] Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 67. MR 0347778
  • [S] Sudarshan K. Sehgal, Nilpotent elements in group rings, Manuscripta Math. 15 (1975), 65–80. MR 0364417

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22C05, 43A05

Retrieve articles in all journals with MSC: 22C05, 43A05

Additional Information

Keywords: Compact groups, factorization, Haar measure, normality of closed subgroups
Article copyright: © Copyright 1986 American Mathematical Society