BETTER BOUNDS FOR PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

STAVROS N. BUSENBERG, DAVID C. FISHER AND MARIO MARTELLI

ABSTRACT. Let \(f \) be Lipschitz with constant \(L \) in a Banach space and let \(x(t) \) be a \(P \)-periodic solution of \(x'(t) = f(x(t)) \). We show that \(P \geq 6/L \). An example is given with \(P = 2\pi/L \), so the bound is nearly strict. We also give a short proof that \(P \geq 2\pi/L \) in a Hilbert space.

I. Introduction. Suppose \(f \) is Lipschitz with constant \(L \) in a Banach space and \(x(t) \) is a \(P \)-periodic solution of \(x'(t) = f(x(t)) \). How small can \(LP \) be?

This question was first addressed when Lasota and Yorke\cite{3} proved \(LP \geq 4 \). Busenberg and Martelli\cite{2} showed \(LP \geq 4\frac{1}{2} \). We show that \(LP \geq 6 \).

The lowest known \(LP \) is \(2\pi \), e.g. for nonzero solutions of \(u'(t) = v(t) \) and \(v'(t) = -u(t) \). Also, in a Hilbert space, \(LP \geq 2\pi \) (Lasota and Yorke\cite{3}, Yorke\cite{4}—A short proof is given in \S III). So the Hilbert space bound is strict, but the Banach space bound may not be strict.

II. In Banach spaces, \(LP \geq 6 \).

LEMMA 1. Let \(B \) be a Banach space and let \(y: \mathbb{R} \rightarrow B \) be continuous and \(P \)-periodic with \(||y'(t)|| \) integrable. Then

\[\int_0^P \int_0^P ||y(t) - y(s)|| \, ds \, dt \leq \frac{P}{6} \int_0^P \int_0^P ||y'(t) - y'(s)|| \, ds \, dt. \]

PROOF.

\[A = \int_0^P \int_0^P ||y(t) - y(s)|| \, ds \, dt = \int_0^P \int_0^P ||y(s + t) - y(s)|| \, ds \, dt \]

\[= \int_0^P \int_0^P \frac{(P - t)t}{P} \left(\frac{y(s + t) - y(s)}{t} - \frac{y(s) - y(s + t - P)}{P - t} \right) \, ds \, dt \]

\[= \int_0^P \int_0^P \frac{(P - t)t}{P^2} \left(\int_0^P \left(y' \left(s + \frac{tr}{P} \right) - y' \left(s + \frac{tr - r}{P} \right) \right) \, dr \right) \, ds \, dt \]

\[\leq \int_0^P \int_0^P \frac{(P - t)t}{P^2} \int_0^P \left(y' \left(s + \frac{tr}{P} \right) - y' \left(s + \frac{tr - r}{P} \right) \right) \, dr \, ds \, dt \]

\[= \int_0^P \int_0^P \frac{(P - t)t}{P^2} \int_0^P \left(y' \left(s + \frac{tr}{P} \right) - y' \left(s + \frac{tr - r}{P} \right) \right) \, dr \, ds \, dt. \]
Since the inner integral is over one period, it can be shifted by \(tr/P - r \) to yield
\[
A < \int_0^P \frac{(P - t)^2}{P^2} dt \int_0^P \left\| y'(s + r) - y'(s) \right\| ds \, dr
\]
\[
= \frac{P}{6} \int_0^P \int_0^P \left\| y'(r) - y'(s) \right\| ds \, dr.
\]

Theorem 1. If \(f \) is Lipschitz with constant \(L \) in a Banach space and \(x(t) \) is a nonconstant \(P \)-periodic solution of \(x'(t) = f(x(t)) \), then \(LP \geq 6 \).

Proof.
\[
\int_0^P \int_0^P \left\| x(t) - x(s) \right\| ds \, dt \leq \frac{P}{6} \int_0^P \int_0^P \left\| x'(t) - x'(s) \right\| ds \, dt
\]
\[
= \frac{P}{6} \int_0^P \int_0^P \left\| f(x(t)) - f(x(s)) \right\| ds \, dt \leq \frac{LP}{6} \int_0^P \int_0^P \left\| x(t) - x(s) \right\| ds \, dt.
\]
Solving for \(LP \) gives the result.

III. A short proof that **\(LP \geq 2\pi \) **in Hilbert spaces.

Lemma 2 (a Hilbert space analog of Wirtinger’s inequality). Let \(H \) be a Hilbert space and let \(y: \mathbb{R} \to H \) be continuous and \(P \)-periodic with \(\int_0^P y(t) \, dt = 0 \) and \(\| y'(t) \|^2 \) integrable. Then
\[
\int_0^P \| y(t) \|^2 \, dt \leq \frac{P^2}{4\pi^2} \int_0^P \| y'(t) \|^2 \, dt.
\]

Proof. Since the path of \(y(t) \) is compact, there is a countable orthonormal set \(e_1, e_2, \ldots \) with \(y(t) = \sum_{i=1}^{\infty} a_i(t) e_i \). Each \(a_i(t) \) is \(P \)-periodic and \(\int_0^P a_i(t) \, dt = 0 \), so Wirtinger’s inequality [1] gives \(\int_0^P a_i(t)^2 \, dt \leq (P^2/4\pi^2) \int_0^P a_i'(t)^2 \, dt \). Then
\[
\int_0^P \| y(t) \|^2 \, dt = \int_0^P \left\| \sum_{i=1}^{\infty} a_i(t) e_i \right\|^2 \, dt = \int_0^P \sum_{i=1}^{\infty} a_i(t)^2 \, dt
\]
\[
= \sum_{i=1}^{\infty} \int_0^P a_i(t)^2 \, dt \leq \frac{P^2}{4\pi^2} \sum_{i=1}^{\infty} \int_0^P a_i'(t)^2 \, dt = \frac{P^2}{4\pi^2} \int_0^P \sum_{i=1}^{\infty} a_i'(t)^2 \, dt
\]
\[
= \frac{P^2}{4\pi^2} \int_0^P \left\| \sum_{i=1}^{\infty} a_i'(t) e_i \right\|^2 \, dt = \frac{P^2}{4\pi^2} \int_0^P \| y'(t) \|^2 \, dt.
\]

Theorem 2 [3, 4]. If \(f \) is Lipschitz with constant \(L \) in a Hilbert space and \(x(t) \) is a nonconstant \(P \)-periodic solution of \(x'(t) = f(x(t)) \), then \(LP \geq 2\pi \).

Proof. Pick \(h \) with \(x(h) \neq x(0) \). Since \(x(t) \) is \(P \)-periodic, \(x(t + h) - x(t) \) is \(P \)-periodic and \(\int_0^P (x(t + h) - x(t)) \, dt = 0 \). Then from Lemma 2
\[
\int_0^P \| x(t + h) - x(t) \|^2 \, dt \leq \frac{P^2}{4\pi^2} \int_0^P \| x'(t + h) - x'(t) \|^2 \, dt
\]
\[
= \frac{P^2}{4\pi^2} \int_0^P \| f(x(t + h)) - f(x(t)) \|^2 \, dt \leq \frac{L^2 P^2}{4\pi^2} \int_0^P \| x(t + h) - x(t) \|^2 \, dt.
\]
Solving for \(LP \) gives the result.

Note added in proof. The bound in Theorem 1 is now known to be sharp.
We have constructed an example in a Banach space with \(LP = 6 \).
REFERENCES

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CALIFORNIA 91711 (Current address of S. N. Busenberg and D. C. Fisher)

DEPARTMENT OF MATHEMATICS, BRYN MAWR COLLEGE, BRYN MAWR, PENNSYLVANIA 19010 (Current address of Mario Martelli)