Harnack's inequality for Schrödinger operators and the continuity of solutions

Authors:
F. Chiarenza, E. Fabes and N. Garofalo

Journal:
Proc. Amer. Math. Soc. **98** (1986), 415-425

MSC:
Primary 35B99; Secondary 35D10, 35J15

MathSciNet review:
857933

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a uniform Harnack inequality for nonnegative solutions of , where is a second order elliptic operator in divergence form, and belongs to the Stummel class of potentials. As a consequence we obtain the continuity of a general weak solution. These results extend the previous work of Aizenman and Simon for .

**[1]**M. Aizenman and B. Simon,*Brownian motion and Harnack inequality for Schrödinger operators*, Comm. Pure Appl. Math.**35**(1982), no. 2, 209–273. MR**644024**, 10.1002/cpa.3160350206**[2]**R. R. Coifman and C. Fefferman,*Weighted norm inequalities for maximal functions and singular integrals*, Studia Math.**51**(1974), 241–250. MR**0358205****[3]**Gianni Dal Maso and Umberto Mosco,*Wiener criteria and energy decay for relaxed Dirichlet problems*, Arch. Rational Mech. Anal.**95**(1986), no. 4, 345–387. MR**853783**, 10.1007/BF00276841**[4]**Ennio De Giorgi,*Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari*, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3)**3**(1957), 25–43 (Italian). MR**0093649****[5]**E. B. Fabes and D. W. Stroock,*The 𝐿^{𝑝}-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations*, Duke Math. J.**51**(1984), no. 4, 997–1016. MR**771392**, 10.1215/S0012-7094-84-05145-7**[6]**F. John and L. Nirenberg,*On functions of bounded mean oscillation*, Comm. Pure Appl. Math.**14**(1961), 415–426. MR**0131498****[7]**W. Littman, G. Stampacchia, and H. F. Weinberger,*Regular points for elliptic equations with discontinuous coefficients*, Ann. Scuola Norm. Sup. Pisa (3)**17**(1963), 43–77. MR**0161019****[8]**Jürgen Moser,*On Harnack’s theorem for elliptic differential equations*, Comm. Pure Appl. Math.**14**(1961), 577–591. MR**0159138****[9]**Benjamin Muckenhoupt,*The equivalence of two conditions for weight functions*, Studia Math.**49**(1973/74), 101–106. MR**0350297****[10]**J. Nash,*Continuity of solutions of parabolic and elliptic equations*, Amer. J. Math.**80**(1958), 931–954. MR**0100158****[11]**M. V. Safanov,*Harnack's inequality for elliptic equations and the Hölder property of their solutions*, J. Soviet Math.**21**(1983), 851-863.**[12]**Martin Schechter,*Spectra of partial differential operators*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. North-Holland Series in Applied Mathematics and Mechanics, Vol. 14. MR**0447834****[13]**Neil S. Trudinger,*Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations*, Invent. Math.**61**(1980), no. 1, 67–79. MR**587334**, 10.1007/BF01389895**[14]**Zhong Xin Zhao,*Conditional gauge with unbounded potential*, Z. Wahrsch. Verw. Gebiete**65**(1983), no. 1, 13–18. MR**717929**, 10.1007/BF00534990

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35B99,
35D10,
35J15

Retrieve articles in all journals with MSC: 35B99, 35D10, 35J15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1986-0857933-4

Keywords:
Harnack's inequality,
Schrödinger equation

Article copyright:
© Copyright 1986
American Mathematical Society