Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the volumes of images of holomorphic mappings in $ {\bf C}\sp n$


Author: H. Alexander
Journal: Proc. Amer. Math. Soc. 98 (1986), 461-466
MSC: Primary 32H35; Secondary 31B20, 32E25
DOI: https://doi.org/10.1090/S0002-9939-1986-0857941-3
MathSciNet review: 857941
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a holomorphic map from the unit ball in complex $ n$-space to complex $ n$-space. We establish a lower bound for the volume, taken without multiplicity, of the image of $ f$. The estimate is in terms of the boundary values of $ f$. This generalizes some known results in one complex variable. The proof uses the methods of uniform algebras.


References [Enhancements On Off] (What's this?)

  • [1] H. Alexander, Volumes of images of varieties in projective space and in Grassmannians, Trans. Amer. Math. Soc. 189 (1974), 237-249. MR 0357850 (50:10316)
  • [2] H. Alexander, B. A. Taylor and J. L Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335-341. MR 0302935 (46:2078)
  • [3] S. Axler and J. Shapiro, Putnam's theorem, Alexander's spectral area estimate and VMO, Math. Ann. 27 (1985), 161-183. MR 783550 (87b:30053)
  • [4] C. Bandle, Isoperimetric inequalities and applications, Pitman, Boston, Mass., 1980. MR 572958 (81e:35095)
  • [5] H. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Shilov boundaries, Trans. Amer. Math. Soc. 91 (1966), 246-276. MR 0136766 (25:227)
  • [6] E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer, New York, 1965. MR 0188387 (32:5826)
  • [7] L. Hormander, An introduction to complex analysis in several variables, North-Holland, New York, 1979. MR 1045639 (91a:32001)
  • [8] Ch. Stanton, Counting functions and majorization for Jensen measures, preprint, Univ. of California, Riverside, 1985. MR 863538 (88c:32002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H35, 31B20, 32E25

Retrieve articles in all journals with MSC: 32H35, 31B20, 32E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0857941-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society