SIMPLE EXAMPLES OF NONREALIZABLE CR HYPERSURFACES
HOWARD JACOBOWITZ

ABSTRACT. A new proof is provided of a nonrealizability result due to Hill, Penrose, and Sparling. This result is then generalized to higher dimensions: Each ∂_b-cohomology class in $H^{0,1}(M)$ can be used to define a nonrealizable CR structure on $M \times \mathbb{R}^2$.

Consider an example due to Hill, Penrose, and Sparling [P] as formulated by Eastwood [E]. Let M be a three-dimensional hypersurface in \mathbb{C}^2 with Lewy operator L. Define a CR structure on $M \times \mathbb{C}$ by taking

\[(1) \quad L_1 = L + g\zeta /\partial\zeta, \quad L_2 = \partial /\partial \zeta,\]

where g is a function on M and ζ is the coordinate for \mathbb{C}. It is known that when $Lf = g$ has no solution, then this structure cannot be realized as a hypersurface in \mathbb{C}^3. The proof outlined in [P] uses the extension of holomorphic vector bundles across boundaries in the base. A simple proof using a Taylor series expansion was given in [E]. Here we give another simple proof; this one uses the canonical bundle K of a CR manifold. This bundle has also been useful in other contexts [F, J]. If M^{2n+1} is a CR manifold of hypersurface type and if $\theta_1, \theta_2, \ldots, \theta_{n+1}$ are independent forms each of which annihilates every Lewy vector field, then $K = \{\lambda \theta_1 \wedge \cdots \wedge \theta_{n+1}, \lambda \in \mathbb{C}^*\}$. Note that K does not depend on the particular choices of θ_j.

So now let $\theta_1 = dz_1$ and $\theta_2 = dz_2$ where (z_1, z_2) are the coordinates on \mathbb{C}^2 restricted to M. We may assume $dz_1 dz_2 \neq 0$ and also that $Lz_1 = 0$, $Lz_2 = 0$, $Lz_1 = 1$. Let $\theta_3 = dz_1 g \theta_1$ and $\Omega = \theta_1 \theta_2 \theta_3$. Thus Ω is a section of the canonical bundle of $M \times \mathbb{C}$. If $M \times \mathbb{C}$ can be realized by a hypersurface in \mathbb{C}^3 then, using (w_1, w_2, w_3) as coordinates on \mathbb{C}^3, $dw_1 dw_2 dw_3$ is also a section of this bundle and so is a multiple of Ω. Thus $d(f\Omega) = 0$ for some nonzero function f. But

\[d(f\Omega) = (Lf + fg + f_\zeta g)\bar{\partial}_1 \Omega + f_\zeta \bar{\partial}_3 \Omega.\]

In particular, we may set $\zeta = 0$ to obtain $L(-\ln f) = g$. Thus if $M \times \mathbb{C}$ is realizable then $Lf = g$ is solvable. Conversely, if $Lf = g$ then $(z_1, z_2, \zeta e^{-f})$ provides an embedding into \mathbb{C}^3.

It is simple to give a generalization to higher dimensions. Let M^{2n+1} be a hypersurface in \mathbb{C}^{n+1}. Let g be a 1-form on M which is a representative of a ∂_b-cohomology class $[g]$ in $H^{0,1}(M)$. Let (z_1, \ldots, z_{n+1}) be coordinates on \mathbb{C}^{n+1}
and ζ a coordinate on C. Note that $dz_1 \cdots dz_{n+1}$ is nonzero when restricted to M. Define a CR structure on $M \times C$ by setting

$$\theta_j = dz_j, \quad j = 1, \ldots, n+1, \quad \text{and} \quad \theta_{n+2} = d\zeta - \zeta g.$$

Theorem. This CR structure is integrable and depends only on $[g]$. It is non-realizable precisely when $[g] \neq 0$.

Remark. If M is nondegenerate hypersurface of “signature” $(1, n - 1)$ then $H^{0,1}$ is not zero and so there exists a degenerate nonrealizable CR structure of signature $(1, n - 1, 0)$.

Proof. Since g is taken to represent a cohomology class we have that $dg = \sum_{j=1}^{n+1} g_j \wedge \theta_j$. Thus $d\theta_{n+2} = -d\zeta \wedge g - \zeta dg = -\theta_{n+2} \wedge g - \zeta(g_j \wedge \theta_j)$. So $d\theta_j \in \{\theta_1, \ldots, \theta_{n+2}\}$ and our structure is integrable. Let g and h represent the same class in $H^{0,1}$. So $g = h + \sum_{j=1}^{n+1} \alpha_j \theta_j + df$ for some functions on M. Let $\omega = d\eta - \eta h$ for η a complex variable. We claim that $\mathcal{S} = \{\theta_1, \ldots, \theta_{n+2}\}$ and $\mathcal{S}' = \{\theta_1, \ldots, \theta_{n+1}, \omega\}$ define the same CR structure. By this we mean there is a map $\Phi : M \times C \to M \times C$ such that $\Phi_*(\theta_j) \in \text{linear span } \mathcal{S}'$. Let $\Phi(z, \eta) = (z, \eta e^f)$. So $\Phi_* \theta_j = \theta_j$, $j = 1, \ldots, n+1$, and

$$\Phi_*(\theta_{n+2}) = d(\eta e^f) - \eta e^f g = e^f \omega \mod \{\theta_1, \ldots, \theta_{n+1}\}.$$

Thus $\Phi_*(\theta_{n+2}) \in \mathcal{S}'$. In particular, if $[g] = 0$ then g and 0 define the same CR structure. This structure is now the product of the CR structures $M \times C$ and hence is realizable in C^{n+2}. Thus it only remains to show that if the CR structure given by S is realizable then $[g] = 0$. Let $\Omega = \theta_1 \cdots \theta_{n+2}$ be a section of the canonical bundle. Since $\theta_1 \cdots \theta_{n+1} dg = 0$, we have that $d\Omega = g \wedge \Omega$. But, by the same reasoning as before, if $M \times C$ is realizable, then $d(f\Omega) = 0$ for some function f. Thus

$$(d'f + fg + f \zeta g + f \zeta \bar{g} + f \bar{\zeta} \bar{g} + f \bar{\zeta} \theta_{n+2}) \Omega = 0$$

where d' is with respect to M. Set $\zeta = 0$ to obtain $(d'(-\ln f) - g)\theta_1 \cdots \theta_{n+1} = 0$. This implies $[g] = 0$.

The author would like to thank Claude LeBrun for bringing to his attention the particular formulation in [E] of our example (1). Our proof and generalization follow naturally from the knowledge that (1) is nonrealizable. The harder task, accomplished by Hill, Penrose, and Sparling, was to find this example.

References

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, CAMDEN, NEW JERSEY 08102