Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Simple examples of nonrealizable CR hypersurfaces

Author: Howard Jacobowitz
Journal: Proc. Amer. Math. Soc. 98 (1986), 467-468
MSC: Primary 32G07; Secondary 53C15
MathSciNet review: 857942
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new proof is provided of a nonrealizability result due to Hill, Penrose, and Sparling. This result is then generalized to higher dimensions: Each $ {\partial _b}$-cohomology class in $ {H^{0,1}}(M)$ can be used to define a nonrealizable CR structure on $ M \times {{\mathbf{R}}^2}$.

References [Enhancements On Off] (What's this?)

  • [E] M. Eastwood, The Hill-Penrose-Sparling C.R.-folds, Twistor Newsletter 18 (1984), 16.
  • [F] F. Farris, An intrinsic construction of the Fefferman metric (to appear).
  • [J] H. Jacobowitz, The canonical bundle of a CR manifold, Pacific J. Math. (to appear). MR 876018 (88e:32027)
  • [P] R. Penrose, Physical space-time and nonrealizable CR-structures, Bull. Amer. Math. Soc. 8 (1983), 427-448. MR 693958 (84e:32022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32G07, 53C15

Retrieve articles in all journals with MSC: 32G07, 53C15

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society