Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the homotopy groups of $ A(X)$


Author: Stanisław Betley
Journal: Proc. Amer. Math. Soc. 98 (1986), 495-498
MSC: Primary 18F25; Secondary 19D10
MathSciNet review: 857948
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will prove that if $ X$ is any space with a finite fundamental group, then Waldhausen's algebraic $ K$-groups of $ X$ are finitely generated. We will use Dwyer's machinery developed in Twisted homological stability for general linear groups (Ann. of Math. 111).


References [Enhancements On Off] (What's this?)

  • [D] W. G. Dwyer, Twisted homological stability for general linear groups, Ann. of Math. (2) 111 (1980), no. 2, 239–251. MR 569072, 10.2307/1971200
  • [K] Wilberd van der Kallen, Homology stability for linear groups, Invent. Math. 60 (1980), no. 3, 269–295. MR 586429, 10.1007/BF01390018
  • [R] M. S. Raghunathan, A note on quotients of real algebraic groups by arithmetic subgroups, Invent. Math. 4 (1967/1968), 318–335. MR 0230332
  • [S] J.-P. Serre, Arithmetic groups, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 105–136. MR 564421
  • [W] F. Waldausen, Algebraic $ K$-theory of topological spaces. I, Proc. Sympos. Pure Math., vol. 32, Part 1, Amer. Math. Soc., Providence, R.I., 1978, pp. 35-60.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18F25, 19D10

Retrieve articles in all journals with MSC: 18F25, 19D10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1986-0857948-6
Keywords: Algebraic $ K$-theory of a space, Postnikow tower
Article copyright: © Copyright 1986 American Mathematical Society