Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Two-bridge knots with unknotting number one


Authors: Taizo Kanenobu and Hitoshi Murakami
Journal: Proc. Amer. Math. Soc. 98 (1986), 499-502
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-1986-0857949-8
MathSciNet review: 857949
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine all two-bridge knots with unknotting number one. In fact we prove that a two-bridge knot has unknotting number one iff there exist positive integers $ p$, $ m$, and $ n$ such that $ (m,n) = 1$ and $ 2mn = p \pm 1$, and it is equivalent to $ S(p,2{n^2})$ in Schubert's notation. It is also shown that it can be expressed as $ C(a,{a_1},{a_2}, \ldots ,{a_k}, \pm 2, - {a_k}, \ldots , - {a_2}, - {a_1})$ using Conway's notation.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. 28 (1927), 562-586. MR 1502807
  • [2] S. A. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984), 469-471. MR 757839 (85m:57006)
  • [3] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, 1969, pp. 329-358. MR 0258014 (41:2661)
  • [4] M. Culler and P. B. Shalen, Incompressible surfaces and surgery on knots, preprint.
  • [5] M. Culler, C. McA. Gordon, J. Luecke, and P. B. Shalen, Dehn surgery on knots, preprint, MSRI, 1985. MR 788388 (86k:57013)
  • [6] C. D. Hodgson, Involutions and isotopies of lens spaces, Master Thesis, Univ. of Melbourne, 1981.
  • [7] W. B. R. Lickorish, The unknotting number of a classical knot, preprint, Cambridge, 1982. MR 813107 (87a:57012)
  • [8] J. M. Montesinos, Surgery on links and double branched coverings of $ {S^3}$, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 227-259. MR 0380802 (52:1699)
  • [9] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745. MR 0383406 (52:4287)
  • [10] Y. Nakanishi, A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), 99-108. MR 634000 (83d:57005)
  • [11] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133-170. MR 0082104 (18:498e)
  • [12] L. Siebenmann, Exercices sur les nœuds rationnels, preprint, Orsay, 1975.
  • [13] W. Whitten, Knot complements and groups, Topology (to appear). MR 880506 (88f:57014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1986-0857949-8
Keywords: Two-bridge knot, unknotting number, lens space, Dehn surgery
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society