Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Toposes, monoid actions, and universal coalgebra

Author: Robert C. Davis
Journal: Proc. Amer. Math. Soc. 98 (1986), 547-552
MSC: Primary 18B25; Secondary 18C15, 20M50
MathSciNet review: 861747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A category cotripleable over Sets may be a topos, or may fail to be a topos in at least two distinct ways. One class of examples involves the category of $ M$-sets and "strong" homomorphisms. For finite monoids $ M$, this category is cotripleable iff the left ideals of $ M$ are totally ordered by inclusion.

References [Enhancements On Off] (What's this?)

  • [1] M. Barr and C. Wells, Toposes, triples, and theories, Grundlehren Math. Wiss., Bd. 278, Springer-Verlag, 1985. MR 771116 (86f:18001)
  • [2] A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. 1, Math. Surveys, No. 7, Amer. Math. Soc, Providence, R. I., 1961. MR 0132791 (24:A2627)
  • [3] Robert C. Davis, Combinatorial examples in universal coalgebra, Proc. Amer. Math. Soc. 89 (1983), 32-34. MR 706504 (85i:18010a)
  • [4] -, Combinatorial examples in universal coalgebra. III, Proc. Amer. Math. Soc. 92 (1984), 332-334. MR 759647 (85i:18010c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18B25, 18C15, 20M50

Retrieve articles in all journals with MSC: 18B25, 18C15, 20M50

Additional Information

Keywords: Cotripleable category, right adjoint, terminal object, elementary topos, subobject classifier, exponential object, monoid, left ideal, $ \mathcal{L}$-class
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society