A LATTICE-THEORETIC EQUIVALENT OF THE INVARIANT SUBSPACE PROBLEM
W. E. LONGSTAFF

ABSTRACT. Every bounded linear operator on complex infinite-dimensional separable Hilbert space has a proper invariant subspace if and only if for every lattice automorphism \(\phi \) of a certain abstract complete lattice \(P \) (defined by N. Zierler) there exists an element \(a \in P \) different from 0 and 1 such that \(\phi^2(a) \leq a \).

Let \(H \) be a complex, infinite-dimensional, separable Hilbert space. The Invariant Subspace Problem is: does every operator \(T \in B(H) \) have a nontrivial invariant subspace? Several equivalent problems are known; some are mentioned in [3] (e.g. p. 190, p. 194), see also [2]. In this note we point out that this famous problem is equivalent to a problem in lattice theory (Corollary 1).

Our equivalence rests on two results. Firstly, the lattice \(C(H) \) of all closed subspaces of \(H \) has a lattice-theoretic characterization due to Zierler [4, 5]. Secondly, every lattice automorphism \(\phi \) of \(C(H) \) is spatial in the sense that there exists a bicontinuous linear or conjugate linear bijection (unique up to nonzero scalar multiples) \(S: H \to H \) such that \(\phi(M) = SM \) for every \(M \in C(H) \), [1].

Let \(\text{Aut } C(H) \) denote the group of automorphisms of \(C(H) \).

THEOREM 1. The following are equivalent.

1. For every \(T \in B(H) \) there exists \(M \in C(H) \) different from (0) and \(H \) such that \(TM \subseteq M \);
2. For every \(\phi \in \text{Aut } C(H) \) there exists \(M \in C(H) \) different from (0) and \(H \) such that \(\phi^2(M) \subseteq M \).

PROOF. Assume (1) holds. Let \(\phi \in \text{Aut } C(H) \) be induced by \(S \). Then \(\phi^2 \) is induced by \(S^2 \) which is linear. Thus (2) holds.

Conversely, assume (2) holds. Let \(T \in B(H) \) and let \(\lambda \) be a scalar satisfying \(|\lambda| > \|T\| \). Then \(S = T - \lambda \) is invertible and [3, p. 34] \(S = R^2 \) for some invertible operator \(R \in B(H) \). If \(\phi \) is the automorphism induced by \(R \) and \(M \) is as in (2) above, we have \(SM \subseteq M \) so \(TM \subseteq M \).

Let \(P \) be an abstract lattice satisfying the (lattice-theoretic) hypotheses of Theorem 2.2 of [4] and assume also that (in the notation of [4]) the coordinatizing division ring \(D \) is algebraically closed. Then there exists a lattice isomorphism \(\theta: P \to C(H) \) (satisfying \(\theta(a') = \theta(a)^\perp \), where \(a' \) denotes the complement of \(a \) in \(P \)). Let \(\text{Aut } P \) denote the set of automorphisms of \(P \), and let 0 (respectively, 1) denote the least (respectively, greatest) element of \(P \).
COROLLARY 1. The following are equivalent.

(1) For every $T \in B(H)$ there exists $M \in \mathcal{C}(H)$ different from (0) and H such that $TM \subseteq M$;

(2) For every $\phi \in \text{Aut } P$ there exists $a \in P$ different from 0 and 1 such that $\phi^2(a) \leq a$.

Let \mathcal{L} denote the set of automorphisms of $\mathcal{C}(H)$ that are induced by invertible operators of $B(H)$. Obviously \mathcal{L} is a subgroup of Aut $\mathcal{C}(H)$. Some characterizations of \mathcal{L} follow.

THEOREM 2. $\mathcal{L} = \{\phi^2 \psi^2 : \phi, \psi \in \text{Aut } \mathcal{C}(H)\}$.

PROOF. Let $\mathcal{Q} = \{\phi^2 \psi^2 : \phi, \psi \in \text{Aut } \mathcal{C}(H)\}$. Clearly $\mathcal{Q} \subseteq \mathcal{L}$. Let $\eta \in \mathcal{L}$ and suppose that η is induced by $S \in B(H)$. Then $S = UA$ with U unitary and A positive and invertible. There exists $V \in B(H)$ such that $V^2 = U$. Also $(A^{1/2})^2 = A$. Thus $\eta = \phi^2 \psi^2$ where ϕ is induced by V and ψ is induced by $A^{1/2}$.

COROLLARY 2. \mathcal{L} is the subgroup of Aut $\mathcal{C}(H)$ generated by $\{\phi^2 : \phi \in \text{Aut } \mathcal{C}(H)\}$.

If G is an abstract group, it is clear that a subgroup K of G has index 2 if and only if $gh \in K$ whenever $g, h \notin K$. Also, every subgroup of G of index 2 is a maximal proper (normal) subgroup and contains the square of every element of G. From these observations and the preceding corollary it follows that \mathcal{L} is the only subgroup of Aut $\mathcal{C}(H)$ of index 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN AUSTRALIA, NEDLANDS 6009, AUSTRALIA