Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A new proof of a weighted inequality for the ergodic maximal function

Author: Kenneth F. Andersen
Journal: Proc. Amer. Math. Soc. 98 (1986), 619-622
MSC: Primary 28D05; Secondary 42B25
MathSciNet review: 861763
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: E. Atencia and A. de la Torre proved that the ergodic maximal function operator is bounded on $ {L^p}(\omega )$ if $ \omega $ satisfies an appropriate analogue of Muckenhoupt's $ {A_p}$ condition. An alternate proof of this result is given.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05, 42B25

Retrieve articles in all journals with MSC: 28D05, 42B25

Additional Information

PII: S 0002-9939(1986)0861763-7
Keywords: Maximal functions, ergodic maximal function, weighted inequalities
Article copyright: © Copyright 1986 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia