GENERAL POSITION THEOREMS FOR GENERALIZED MANIFOLDS

J. L. BRYANT

ABSTRACT. It is an open question as to whether a generalized \(n \)-manifold, \(n \geq 5 \), that satisfies the disjoint disks property is a topological manifold. In this paper it is shown that any such space \(X \) satisfies general position properties for maps of polyhedra into \(X \).

The program to establish a topological characterization of euclidean space has been stalled, at least temporarily, by the discovery that Quinn's obstruction to resolving a generalized manifold may not be categorically zero as first asserted in [6]. (See [7].) Thus Cannon's conjecture [3] that a generalized \(n \)-manifold \(X \), \(n \geq 5 \), is a topological manifold if and only if \(X \) satisfies the disjoint disks property remains open. Quinn's results [6, 7], however, do produce an obstruction \(\sigma(X) \) that vanishes if and only if \(X \) is a topological manifold, although it is not known at this time whether the obstruction can be nonzero.

In this paper we show (Theorem 3) that any generalized \(n \)-manifold \(X \), \(n \geq 5 \), having the disjoint disks property also satisfies general position properties for maps of arbitrary polyhedra into \(X \). Thus, in a dimension theory sense \(X \) behaves like a topological manifold. Theorems of this type have also been obtained by John Walsh [9].

DEFINITIONS. A generalized \(n \)-manifold, \(n \)-gm, is a euclidean neighborhood retract \(X \) that is also a homology \(n \)-manifold; that is, \(H_*(X,X-x) \cong H_*(\mathbb{R}^n,\mathbb{R}^n-0) \) for all \(x \in X \). (All homology is understood to have integer coefficients.) The space \(X \) is said to satisfy the disjoint \(k \)-disks property, \(DDP \) (or, simply, the disjoint disks property, \(DDP \), when \(k = 2 \)) if for every pair of maps \(f_1, f_2 : D_k \to X \) of the unit \(k \)-disk \(D_k \) of \(\mathbb{R}^k \) into \(X \) and \(\epsilon > 0 \), there are maps \(f'_1, f'_2 : D_k \to X \) such that \(d(f'_1, f'_2) < \epsilon \) and \(f'_1(D_k) \cap f'_2(D_k) = \emptyset \). If \(f, g : A \to X \) and \(\epsilon > 0 \), then \(f \simeq_\epsilon g \) means \(f \) is \(\epsilon \)-homotopic to \(g \). A subset \(A \) of \(X \) is said to be 1-LCC in \(X \) (1-locally coconnected in \(X \)) if for every \(a \in A \) and neighborhood \(U \) of \(a \) in \(X \) there is a neighborhood \(V \) of \(a \) in \(X \) such that the inclusion induced homomorphism \(\pi_1(V-A) \to \pi_1(U-A) \) is zero. A map (or embedding) \(f : A \to X \) is said to be 1-LCC provided \(f(A) \) is 1-LCC in \(X \).

Main results. In [3] Cannon shows that if \(X \) is an \(n \)-gm, \(n \geq 5 \), having the DDP, then an arbitrary map of a 2-disk (hence, a 2-dimensional polyhedron) into...
X can be approximated by 1-LCC embeddings. Our first result is

Theorem 1. If X is an n-gm, $n \geq 5$, satisfying the DDP, P is a k-dimensional polyhedron, $2k + 1 \leq n$, and $f : P \to X$, then f can be approximated by 1-LCC embeddings.

We show that an n-gm X with the DDP is never "ghastly" [4].

Theorem 2. Suppose X is an n-gm, $n \geq 5$, having the DDP, P is a k-dimensional polyhedron, and $f : P \to X$ is a map. Then f can be approximated by a map $f' : P \to X$ such that

1. $\dim f'(P) \leq k$, and
2. $f'(P)$ is 1-LCC if $k \leq n - 3$.

Finally, we obtain the main general position property.

Theorem 3. Suppose X is an n-gm, $n \geq 5$, with the DDP, P and Q are polyhedra of dimensions p and q, respectively, and $f : P \to X$ and $g : Q \to X$ are maps. Then f and g can be approximated by maps f' and g' such that

1. $\dim [f'(P) \cap g'(Q)] \leq p + q - n$, and
2. $f'(P) \cap g'(Q)$ is 1-LCC in X if $p + q - n \leq n - 3$.

Proofs of the main results. We start with a well-known fact (proved, for example, in [2, 8]).

Lemma 0. A locally compact, finite-dimensional, separable metric space X admits a 1-LCC embedding in some euclidean space.

Lemma 1. Suppose X is an n-dimensional, 1-LCC closed subset of \mathbb{R}^m, $m - n \geq 3$. Then there are F_n subsets $X_0 \subset X_1 \subset \cdots \subset X_n = X$ such that

1. $\dim X_i \leq i$, and
2. $\dim (X_i - X_j) \leq i - j - 1$.

Proof. Let $L_k \subset \mathbb{R}^m$ denote the Menger space:

$$L_k = \{x \in \mathbb{R}^m | \text{at least } m - k \text{ coordinates of } x \text{ are rational}\}.$$

Then $\dim L_k = k$, L_k is a countable union of k-dimensional hyperplanes, and $\dim (\mathbb{R}^m - L_k) = m - k - 1$ [5]. Also $L_0 \subset L_1 \subset \cdots \subset L_m = \mathbb{R}^m$ and $\dim (L_r - L_s) = r - s - 1$. Since X is 1-LCC in \mathbb{R}^m, we can assume that $L_k \cap X = \emptyset$ for $k \leq m - n - 1$ [2, 8].

Set $X_i = X \cap L_{m-n+i}$. Then

1. $\dim X_i = \dim (X \cap L_{m-n+i})$
 $= \dim (X \cap (L_{m-n+i} - L_{m-n-1}))$
 $\leq (m - n + i) - (m - n - 1) - 1 = i$,

and

2. $\dim (X_i - X_j) = \dim (X \cap (L_{m-n+i} - L_{m-n+j}))$
 $\leq \dim (L_{m-n+i} - L_{m-n+j}) = i - j - 1$.

Throughout the rest of this paper X is an n-gm satisfying the DDP, 1-LCC embedded in \mathbb{R}^m for some $m \geq n + 3$.
Lemma 2. There are \(F_\sigma \) subsets \(X_0 \subset X_1 \subset \cdots \subset X_n = X \) such that
1. \(\dim X_i \leq i \),
2. \(\dim(X_i - X_j) \leq i - j - 1 \), and
3. \(X_i \) is 1-LCC in \(X \) for \(i \leq n - 3 \).

Proof. Let \(\{ f_i \}_{i=1}^{\infty} \) be a countable dense subset of \(\text{Map}(D^2, X) \), the space of maps (with the compact-open topology), consisting of 1-LCC embeddings \([3]\). In the proof of Lemma 1, require that \(L_i \cap f_i(D^2) = \emptyset \) for \(k \leq m - 3 \) and all \(i \) (using the fact that the 1-LCC property is transitive). Then \(X_i \cap f_j(D^2) = \emptyset \) for \(i \leq n - 3 \). Thus \(X_i \) is 1-LCC in \(X \) for \(i \leq n - 3 \).

Lemma 3. Let \(X_0 \subset X_1 \subset \cdots \subset X_n = X \) be \(F_\sigma \) subsets of \(X \) satisfying the conclusion of Lemma 2. Then \(\pi_k(X, X - X_i) = 0 \) for \(k < n - i \).

Proof. By local duality in \(X \) \([1, 10]\), \(H_k(X, X - X_i) = 0 \) for \(k < n - i \). If \(i = n - 1 \) or \(n - 2 \), then \(\pi_k(X, X - X_i) = H_k(X, X - X_i) = 0 \). If \(i \leq n - 3 \), then \(X_i \) is 1-LCC in \(X \) so that \(\pi_2(X, X - X_i) = 0 \). Thus by the Hurewicz isomorphism theorem, \(\pi_k(X, X - X_i) = 0 \) for \(i \leq n - 3 \) and \(k < n - i \). (We may assume that \(X \), and hence \(X - X_i \), \(i \leq n - 3 \), are simply connected by passing to the universal cover of \(X \).)

Lemma 4. Suppose \(f: D^k \to X \) is a map and \(\varepsilon > 0 \). Then \(f \simeq_{\varepsilon} f' \) such that \(f'(D^k) \cap X_{n-k-1} = \emptyset \) and \(f' \) is 1-LCC, if \(k \leq n - 3 \).

Proof. To get \(f'(D^k) \cap X_{n-k-1} = \emptyset \), apply Lemma 3 locally, using induction on the skeleta of a fine triangulation of \(D^k \). Similarly, if \(D \) is a 1-LCC 2-cell in \(X \), then for a relative neighborhood \(U \) of \(\text{Int} D \), \(\pi_2(U, U - \text{Int} D) = 0 \) and \(H_i(U, U - \text{Int} D) = 0 \) for \(i \leq n - 3 \). Thus for \(r \leq n - 3 \) any map \(g: (D^r, \text{Bd} D^r) \to (U, U - \text{Int} D) \) is homotopic rel \(\text{Bd} D^r \) to a map \(g': D^r \to U - \text{Int} D \). Applying this argument inductively on the skeleta of a fine triangulation of \(D^k \), we can get \(f \simeq_{\varepsilon} f' \) such that \(f'(D^k) \cap D = \emptyset \) for any 1-LCC 2-cell \(D \) in \(X \). Thus we may simultaneously obtain \(f \simeq_{\varepsilon} f' \) so that \(f' \) is 1-LCC and \(f'(D^k) \cap X_{n-k-1} = \emptyset \).

Corollary. If \(f: D^k \to X \) and \(\varepsilon > 0 \), then \(f \simeq_{\varepsilon} f' \) where \(f' \) is 1-LCC, if \(k \leq n - 3 \), and \(\dim f'(D^k) \leq k \).

The proof of Theorem 2 follows immediately.

Lemma 5. \(X \) satisfies \(DD_kP \) for \(k < n/2 \).

Proof. Given \(f, g: D^k \to X \), apply the Corollary to get \(f \simeq_{\varepsilon} f' \) where \(f' \) is 1-LCC and \(\dim f'(D^k) \leq k \). Then for any open set \(U \) of \(X \), \(\pi_i(U, U - f'(D^k)) = 0 \) for \(i \leq n - k - 1 \). If \(k < n/2 \), then \(k \leq n - k - 1 \) and, hence, by a now familiar argument, for any \(\varepsilon > 0 \), \(g \simeq_{\varepsilon} g' \) where \(g'(D^k) \cap \pi'(D^k) = \emptyset \).

The proof of Theorem 1 now follows easily as in \([3]\).

Proof of Theorem 3. It is clearly sufficient to prove the theorem when \(P \) is a \(p \)-simplex and \(Q \) is a \(q \)-simplex. Suppose \(f: P \to X \) and \(g: Q \to X \) are maps. Let \(X_0 \subset X_1 \subset \cdots \subset X_n = X \) be \(F_\sigma \) subsets of \(X \) obtained from Lemma 2. Then \(f \) can be approximated by \(f': P \to X \) such that \(f'(P) \cap X_i \subset X_i - X_{n-p-1} \), by applying Lemma 3.

Observe that \(f'(P) \cap X_{2n-p-q-1} \) is a \(\sigma \)-compact subset of \(X_{2n-p-q-1} - X_{n-p-1} \), which has dimension \(n - q - 1 \). We wish to approximate \(g \) by \(g': Q \to X \) so that \(g'(Q) \cap f'(P) \cap X_{2n-p-q-1} = \emptyset \), for then it would follow that \(g'(Q) \cap f'(P) \subset X - X_{2n-p-q-1} \), which has dimension \(p + q - n \), as desired.
Recall that \(L_r = \{ x \in \mathbb{R}^m | \text{at most } m-r \text{ coordinates of } x \text{ are rational} \} = \bigcup_{j=1}^{\infty} E_j \), where \(E_1 \subset E_2 \subset \cdots \) and each \(E_j \) is a finite union of \(r \)-dimensional hyperplanes [5]. Thus each \(X_i = \bigcup_{j=1}^{\infty} Y_{ij} \) where \(Y_{ij} \) is a closed subset of \(X \) of dimension \(\leq i \) and \(Y_{ij} \) is 1-LCC in \(X \) if \(i \leq n-3 \). For \(i = 2n-p-q-1 \), \(Y_{ij} \cap f'(P) \) is a compact set of dimension \(\leq n-q-1 \).

Assume first that \(i = 2n-p-q-1 \leq n-3 \). Then \(H_k(X, X -(Y_{ij} \cap f'(P))) = 0 \) for \(0 \leq k \leq q \) and so \(\pi_k(X, X -(Y_{ij} \cap f'(P))) = 0 \) for \(0 \leq k \leq q \); hence, we can choose \(g': Q \to X \) approximating \(g \) so that \(g'(Q) \cap (Y_{ij} \cap f'(P)) = \emptyset \) for all \(j \). That is, \(g'(Q) \cap f'(P) \cap X_{2n-p-q-1} = \emptyset \).

Suppose next that \(i = 2n-p-q-1 = n-2 \), \(p \leq q \) (without loss of generality), and \(n \geq 6 \). Then \(n-p \geq 3 \) and we can assume further that \(f'(P) \) and, hence, \(f'(P) \cap Y_{ij} \) are 1-LCC in \(X \). From this we see that \(\pi_k(X, X -(f'(P) \cap Y_{ij})) = 0 \) for \(0 \leq k \leq q \) and so we can find \(g' \) such that \(g'(Q) \cap f'(P) \cap Y_{ij} = \emptyset \).

Suppose \(2n-p-q-1 = n-1 \), \(n \geq 5 \), and \(p \leq q \). Then again \(n-p \geq 3 \) and the above argument works.

Finally, if \(2n-p-q-1 \leq n-2 \) and \(n = 5 \), then the only case in which the above argument does not work is \(p = q = 3 \).

Suppose then that \(n = 5 \) and \(p = q = 3 \). Let \(\{ f_i \}_{i=1}^{\infty} \) be a countable dense subset of \(\text{Map}(D^2, X) \) consisting of 1-LCC embeddings. Given \(f: P \to X \) and \(g: Q \to X \), approximate \(f \) by \(f' \) such that \(\dim(f'(P) \cap f_i(D^2)) \leq 0 \) for all \(i = 1,2,\ldots \) and \(\dim f'(P) \leq 3 \). Then \(f'(P) \) and \(f'(P) \cap f_i(D^2), i = 1,2,\ldots \), are 1-LCC in \(\mathbb{R}^m \) since \(X \) is. Thus for any \(\varepsilon > 0 \) it is possible to find an \(\varepsilon \)-homeomorphism \(h: \mathbb{R}^m \to \mathbb{R}^m \) such that \(h(f'(P) \cap f_i(D^2)) \cap L_{m-2} = \emptyset, \) \(i = 1,2,\ldots \), \(h(X) \cap L_k = \emptyset \), for \(k \leq m-4 \), and \(h(f'(P)) \cap L_{m-2} \) is a 1-dimensional \(\sigma \)-compact set that is 1-LCC in \(X \).

Now replace \(X_i = X \cap L_{m-5+i} \) by \(Y_i = X \cap h^{-1}(L_{m-5+i}) \). Then \(f'(P) \cap Y_3 \) is a 1-dimensional \(\sigma \)-compact set that is 1-LCC in \(X \). Hence, \(g \) can be approximated by \(g': Q \to X \) such that \(g'(Q) \cap f'(P) \cap Y_3 = \emptyset \). This means that \(g'(Q) \cap f'(P) \subset X - Y_3 \), which has dimension 1.

REFERENCES

7. ______, An obstruction to the resolutions of homology manifolds, preprint.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306