DENSITIES FOR RANKS OF CERTAIN PARTS OF p-CLASS GROUPS

FRANK GERTH III

Abstract. Let K be a Galois extension of the field of rational numbers of prime degree p, and let C_K be the p-class group of K. In this paper densities for the ranks of certain parts of such C_K are calculated, and these densities suggest a way to extend conjectures of Cohen and Lenstra.

1. Introduction. Let p be a prime number, and let Q denote the field of rational numbers. Let K be a Galois extension of Q such that $\text{Gal}(K/Q)$ is a cyclic group of order p. Let C_K denote the p-class group of K; i.e., the Sylow p-subgroup of the ideal class group of K. (For $p = 2$, we shall be using the Sylow 2-subgroup of the narrow ideal class group of K.) Let σ be a generator of $\text{Gal}(K/Q)$, and let $C_K^{(1-\sigma)^i} = \{a^{(1-\sigma)^i}: a \in C_K\}$ for $i = 0, 1, 2, \ldots$. Suppose exactly t primes ramify in K/Q. It is a classical result that $C_K/C_K^{(1-\sigma)}$ is an elementary abelian p-group with rank equal to $t - 1$. Furthermore, $C_K^{(1-\sigma)^i}/C_K^{(1-\sigma)^{i+1}}$ is an elementary abelian p-group of each i, and

$$\text{rank } C_K = \text{rank}(C_K/C_K^p) = \sum_{i=1}^{p-1} \text{rank}(C_K^{(1-\sigma)^{i-1}}/C_K^{(1-\sigma)^i}),$$

where $C_K^p = \{a^p: a \in C_K\}$ (cf. [9, Proposition 4.2 and 11, Satz 6]). Since we know that $\text{rank } C_K/C_K^{(1-\sigma)} = t - 1$, we shall focus our attention on $C_K^{(1-\sigma)}/C_K^{(1-\sigma)^2}$. If we let $R_K = \text{rank}(C_K^{(1-\sigma)}/C_K^{(1-\sigma)^2})$, then $0 \leq R_K \leq t - 1$. In this paper we shall consider the following question: how likely is $R_K = 0$, $R_K = 1$, $R_K = 2$, etc., as $t \to \infty$.

2. Statement of main results. Let notation be the same as in §1. For each positive integer t, each nonnegative integer r, and each positive real number x, we define

$$A_t = \{\text{cyclic extensions } K \text{ of } Q \text{ of degree } p \text{ with exactly } t \text{ ramified primes}\}$$

(when $p = 2$, we shall consider separately the imaginary and real quadratic fields)

$$A_{t, x} = \{K \in A_t: \text{the conductor of } K \text{ is } \leq x\},$$

$$A_{t, r, x} = \{K \in A_{t, x}: R_K = r\}.$$

Then we define the density $d_{t, r}$ by

$$d_{t, r} = \lim_{x \to \infty} \frac{|A_{t, r, x}|}{|A_{t, x}|}$$

Received by the editors March 25, 1985 and, in revised form, November 25, 1985.

©1987 American Mathematical Society

0002-9939/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where \(|S|\) denotes the cardinality of a set \(S\). We then define the limit density \(d_{\infty,r}\) by

\[
d_{\infty,r} = \lim_{t \to \infty} d_{t,r}.
\]

Our theorems will show that these limits exist and will provide the values for these limits. For \(p = 2\), we have obtained the following result in [6, Theorems 4.3 and 5.11].

Theorem 1. For imaginary quadratic fields,

\[
d_{\infty,r} = \frac{2^{-r} \prod_{k=1}^{\infty} (1 - 2^{-k})}{\prod_{k=1}^{r} (1 - 2^{-k})^2} \quad \text{for } r = 0, 1, 2, \ldots.
\]

For real quadratic fields,

\[
d_{\infty,r} = \frac{2^{-r(r+1)} \prod_{k=1}^{\infty} (1 - 2^{-k})}{\prod_{k=1}^{r} (1 - 2^{-k}) \prod_{k=1}^{r+1} (1 - 2^{-k})} \quad \text{for } r = 0, 1, 2, \ldots.
\]

Remark. When \(p = 2\),

\[
R_K = \text{rank}\left(C_K^{1} / C_K^{(1,0)} \right) = \text{rank}\left(C_K^2 / C_K^4 \right) = 4\text{-class rank of } C_K.
\]

So Theorem 1 gives limit densities for the 4-class ranks of imaginary and real quadratic fields.

Our goal in this paper is to prove the following theorem.

Theorem 2. Suppose \(p \geq 3\). Then

\[
d_{\infty,r} = \frac{p^{-r(r+1)} \prod_{k=1}^{\infty} (1 - p^{-k})}{\prod_{k=1}^{r} (1 - p^{-k}) \prod_{k=1}^{r+1} (1 - p^{-k})} \quad \text{for } r = 0, 1, 2, \ldots.
\]

Values for \(d_{\infty,r}\) for small \(p\) and \(r\) appear in the Appendix.

3. Proof of Theorem 2. We let notation be the same as in §§1 and 2, and we assume \(p \geq 3\). First we note that the fields \(K\) in \(A_{r,x}\) have conductor \(f_K = p^2 p_1 \cdots p_{r-1}\) or \(f_K = p_1 \cdots p_r\), where \(p_1, \ldots, p_r\) are distinct rational primes with each \(p_i \equiv 1 \pmod{p}\). We can ignore the fields \(K\) with \(f_K = p^2 p_1 \cdots p_{r-1} < x\) when calculating \(d_{r,r}\) since the number of such fields is

\[
O\left(\frac{(\log \log x)^{r-2}}{\log x} \right), \quad \text{while } |A_{r,x}| \gg \frac{x (\log \log x)^{r-1}}{\log x}
\]

(cf. [10, Theorem 437 and 4, p. 201]). For each field \(K\) with \(f_K = p_1 \cdots p_r\), we introduce a \(t \times t\) matrix \(M_K\) whose entries \(m_{ij}\) are defined in terms of Hilbert symbols by

\[
\omega^{m_{ij}} = \begin{pmatrix} p_j \mu_K \\ \varphi_i \end{pmatrix} \quad \text{for } 1 \leq i \leq t, 1 \leq j \leq t,
\]

where \(\omega\) is a primitive \(p\)th root of unity, \(\varphi_i\) is a prime of \(F = \mathbb{Q}(\omega)\) above \(p_i\), and \(\mu_K\) is an element of \(F\) satisfying \(KF = F(\mu_K^{1/p})\). (See [3, p. 197] for more details.) We view \(M_K\) as a matrix over \(\mathbb{F}_p\), the finite field with \(p\) elements. It is known that \(R_K = t - 1 - \text{rank } M_K\) (cf. [9, Proposition 4.6, Proposition 4.7, and IV B 4, p. 45]).
Using this fact, we have in effect determined \(d_{t,r} \) in [5]. To be more precise, \(d_{t,r} \) in (1) corresponds to \(B_{t,e} \) in [5, Equation 2.2]. So

\[
(3) \quad d_{t,r} = \left[\prod_{j=1}^{t-1-r} \left(1 - \frac{1}{p^{r+1-j}} \right) \right] \cdot \frac{1}{p^{tr}} \cdot \sum_{i_1 + \cdots + i_{t-1-r} \leq r} \left(\prod_{s=1}^{t-1-r} p^{i_s} \right).
\]

(When \(r = t - 1 \), \(d_{t,t-1} = p^{-t(t-1)} \).) The main ideas used in proving (3) can be explained as follows. Let \(J \) be any \(t \times t \) matrix with coefficients in \(\mathbb{F}_p \) and with the sum of the entries in each column of \(J \) equal to 0. Let \(N_J(x) = \{ K : MK = J \text{ and } f_K \leq x \} \).

Then \(N_J(x) = h(x) + o(h(x)) \), where \(h(x) \) is a function that is independent of \(J \). (This corresponds to equidistribution of the Hilbert symbols. See [3, p. 196 and pp. 200–206] for more details.) It follows that

\[
\frac{\sum_{j}^{(r)} N_J(x)}{|A_{t,r} : x|} = \frac{\sum_{j}^{(r)} 1 + o(1)}{\sum_{j} 1 + o(1)}
\]

where \(\sum_{j}^{(r)} \) denotes a sum over those \(J \) with rank \(J = t - 1 - r \). Hence

\[
d_{t,r} = \frac{\left(\sum_{j}^{(r)} 1 \right)}{\left(\sum_{j} 1 \right)}.
\]

This rational number is calculated in [5] and is given by (3).

We must show that \(\lim_{t \to \infty} d_{t,r} \) has the value given by Theorem 2. We let \(k = t + 1 - j \) and \(w = t - 1 - r \). Then

\[
d_{t,r} = \left[\prod_{k=r+2}^{t} \left(1 - \frac{1}{p^k} \right) \right] \cdot \frac{1}{p^{tr+1}} \cdot \sum_{i_1 + \cdots + i_w \leq r} p^{i_1 + 2i_2 + \cdots + wi_w}
\]

\[
= \left[\prod_{k=1}^{t} \left(1 - p^{-k} \right) \right] \cdot p^{-r(r+1)} \cdot \sum_{i_1 + \cdots + i_w \leq r} p^{i_1 + 2i_2 + \cdots + wi_w},
\]

and then

\[
(4) \quad d_{\infty,r} = \left[\frac{p^{-r(r+1)} \prod_{k=1}^{t} \left(1 - p^{-k} \right)}{\prod_{k=1}^{t} \left(1 - p^{-k} \right)} \right] \cdot \lim_{w \to \infty} \frac{1}{p^{wr}} \sum_{i_1 + \cdots + i_w \leq r} p^{i_1 + 2i_2 + \cdots + wi_w}.
\]

If \(r = 0 \), then \(d_{\infty,0} \) in (4) is the same as \(d_{\infty,0} \) in the statement of Theorem 2. So we may assume \(r \geq 1 \). To evaluate the limit in (4), we shall use the following lemma.

Lemma. Let \(w \) and \(m \) be positive integers, and let

\[
F_{w,m} = \frac{1}{p^{wm}} \sum_{i_1 + \cdots + i_w = m} p^{i_1 + 2i_2 + \cdots + wi_w}.
\]

Then

\[
\lim_{w \to \infty} F_{w,m} = \prod_{k=1}^{m} \left(1 - p^{-k} \right)^{-1}.
\]
Proof. First we note that
\[F_{w,m} = \sum_{i_1 + \cdots + i_w = m} p^{(1-w)i_1 + (2-w)i_2 + \cdots + (-1)i_{w-1} + 0i_w} \]
since \(1/p^{w+m} = p^{-w(i_1 + \cdots + i_w)}\). Also we note that \(F_{w,m}\) appears in \(F_{w+1,m}\) exactly as those terms having \(i_1 = 0\). Then
\[\lim_{w \to \infty} F_{w,m} = \sum_{l=0}^{\infty} b_{l,m} p^{-l}, \]
where \(b_{l,m}\) is the number of times that
\[l = (w-1)i_1 + (w-2)i_2 + \cdots + 1i_{w-1} + 0i_w \quad \text{for some } w. \]
Since \(i_1 + \cdots + i_{w-1} \leq m\), such an expression can be associated to a partition of \(l\) into at most \(m\) parts. Conversely, given such a partition, we can let \(w-1\) be the largest integer appearing in it and let \(i_k\) be the number of times \(w-s\) appears, \(1 \leq s \leq w-1\). So \(b_{l,m}\) is the number of partitions of \(l\) into at most \(m\) parts. Next we observe that
\[\prod_{k=1}^{m} (1 - p^{-k})^{-1} = \prod_{k=1}^{m} (1 + p^{-k} + p^{-2k} + \cdots) = \sum_{j_1, j_2, \ldots, j_m \geq 0} p^{-1j_1 - 2j_2 - \cdots - mj_m} = \sum_{l=0}^{\infty} c_{l,m} p^{-l}, \]
where \(c_{l,m}\) is the number of times that \(l = 1j_1 + 2j_2 + \cdots + mj_m\). But then \(c_{l,m}\) is the number of partitions of \(l\) into parts with each part at most \(m\). From [10, Theorem 343], \(b_{l,m} = c_{l,m}\) for all \(l\) and \(m\), and hence the lemma is proved.

Now applying the Lemma to the sum in (4), we get
\[\lim_{w \to \infty} \frac{1}{p^{wr}} \sum_{i_1 + \cdots + i_w \leq r \text{ each } i_1 \geq 0} p^{i_1 + 2i_2 + \cdots + wi_w} = \lim_{w \to \infty} \left[\frac{1}{p^{wr}} + \sum_{m=1}^{r} \frac{1}{p^{w(r-m)}} F_{w,m} \right] = \lim_{w \to \infty} F_{w,r} = \prod_{k=1}^{r} (1 - p^{-k})^{-1}, \]
which completes the proof of Theorem 2.

4. Cohen-Lenstra Conjectures. We let notation be the same as in previous sections. In [1] Cohen and Lenstra have made various conjectures that apply to the prime to \(p\) part of the class groups for Galois extensions of \(\mathbb{Q}\) of degree \(p\). Since our results apply to the \(p\) part of the class groups, our results do not prove or disprove any of the Cohen-Lenstra Conjectures. However, our results do have an interesting relationship with the Cohen-Lenstra Conjectures. To describe this relationship, we first let \(S_K\) be the narrow ideal class group of \(K\), and we let \(H_K = S_K^{1-\sigma}\), which is the narrow principal genus of \(K\) for the fields \(K\) we are considering. Then our Theorems 1 and 2 appear to be what would be predicated if we assumed that Fundamental Assumptions 8.1 and Theorem 6.3 in [1] apply to \(H_K\). Actually the appropriate Cohen-Lenstra
probability is defined in a different way than our density $d_{\infty,r}$. More precisely, let

$$d_r = \lim_{x \to \infty} \left(\sum_{K} \frac{1}{|D_K|} \sum_{R_K = r} \frac{1}{|D_K|} \right)$$

where K ranges over the Galois extensions of \mathbb{Q} of degree p, D_K is the discriminant of K, and R_K is defined in §1. (When $p = 2$, the real and imaginary quadratic fields are handled separately.) This Cohen-Lenstra probability d_r omits all reference to the number t of ramified primes and deals with the discriminant D_K instead of the conductor f_K. Since $|D_K| = f_K^{p-1}$, there is no difficulty in passing from the conductor to the discriminant. So we see that

$$d_r = \lim_{x \to \infty} \left(\sum_{s=1}^{\infty} |A_{s,r,x}| \right)$$

(Note that for each x the above sums are finite.) However,

$$d_{\infty,r} = \lim_{t \to \infty} d_{t,r} = \lim_{t \to \infty} \left(\lim_{x \to \infty} \frac{|A_{t,r,x}|}{|A_{t,x}|} \right).$$

Since for fixed t and $s < t$, $|A_{s,r,x}| = o(|A_{t,r,x}|)$ and $|A_{s,x}| = o(|A_{t,x}|)$ as $x \to \infty$ (cf. [5, Propositions 3.3 and 3.4 and 6, Propositions 2.1 and 5.1]), then

$$d_{\infty,r} = \lim_{t \to \infty} \left(\lim_{x \to \infty} \frac{\sum_{s=1}^{t} |A_{s,r,x}|}{\sum_{s=1}^{t} |A_{s,x}|} \right).$$

From (5) and (6), it seems plausible that $d_r = d_{\infty,r}$, although a proof would involve more detailed estimates with explicit dependence on t carefully analyzed.

Now assuming $d_r = d_{\infty,r}$, our results suggest that the Cohen-Lenstra Conjectures should be extended to include all of the narrow principal genus for Galois extensions of \mathbb{Q} of prime degree p. In particular, the conjectures in §9 of [1] could be extended to all of the narrow principal genus. As an example we mention how conjecture (C14) in [1] could be extended.

Conjecture (C14'). For totally real Galois extensions of \mathbb{Q} of prime degree p (including $p = 2$), the probability $Z(p)$ that the narrow principal genus is trivial is given by

$$Z(p) = \prod_{k=2}^{\infty} \left(\zeta_{\mathbb{Q}(\sqrt[k]{1})}(k) \right)^{-1}$$

where $\zeta_{\mathbb{Q}(\sqrt[k]{1})}(s)$ is the Dedekind zeta function of the cyclotomic field $\mathbb{Q}(\sqrt[k]{1})$.

Some numerical values of $Z(p)$ are as follows: $Z(2) = 0.436$, $Z(3) = 0.714$, $Z(5) = 0.903$, and $Z(7) = 0.929$. Also $\lim_{p \to \infty} Z(p) = 1$ (cf. [1, p. 58]). So for large p, one should expect the narrow principal genus to be trivial.

Remark. The Cohen-Lenstra Conjectures should also apply to the usual principal genus, not just the narrow principal genus (cf. [6, p. 491]).
5. Estimate of a character sum. Our proof of Theorem 2 depends on results from [3 and 5]. In the proof of Lemma 3 in [3], we used a certain character sum estimate (see bottom of p. 202 in [3]) that was derived in a preliminary version of [7], but this particular character sum estimate was not included in the final version of [7]. So for the sake of completeness, we sketch a proof of that character sum estimate.

The basic reference for the techniques for this character sum estimate is [2]. We suppose that \(\lambda \) is a nonprincipal Dirichlet character with exponent \(l \) and conductor \(p_1 \cdots p_s \), where \(l \) is a prime and \(p_1, \ldots, p_s \) are distinct primes. We let \(x \) be a large real number, \(q = p_1 \cdots p_s \), \(y = x/q \), and

\[
z = \exp\left[\frac{(\log x)}{(b \log \log x)}\right],
\]

where \(b \) is a constant to be specified later. We assume \(q \leq z \). We want to show

\[
\sum_{p \leq y} \lambda(p) = O\left(\frac{y}{(\log qy)^2}\right)
\]

where the sum ranges over all primes \(p \leq y \). Note that we need only estimate \(\sum_{(qy)^{1/2} < p \leq y} \lambda(p) \) since \(q \leq z \) and \(y = x/q \) imply \((qy)^{1/2} = O(y/(\log qy)^2) \). Now

\[
\sum_{(qy)^{1/2} < p \leq y} \lambda(p) = \sum_{m \geq 1} \frac{\lambda(p^m) \log p}{\log(p^m)} - \sum_{m \geq 2} \frac{\lambda(p^m) \log p}{\log(p^m)}
\]

\[
= \sum_{(qy)^{1/2} < n \leq y} \frac{\Lambda(n) \Lambda(n)}{\log n} + O(y^{1/2})
\]

where

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n \text{ is a power of a prime } p, \\
0 & \text{otherwise}.
\end{cases}
\]

Using partial summation (cf. [10, Theorem 421]), we see that (7) will be proved if we can show that

\[
\sum_{n \leq y} \lambda(n) \Lambda(n) = O\left(\frac{y}{(\log qy)}\right).
\]

From [2, p. 126], we have

\[
\sum_{n \leq y} \lambda(n) \Lambda(n) = -y^\beta / \beta + R(y, T)
\]

where

\[
|R(y, T)| \ll y(\log qy)^2 \exp\left[-c(\log y)/(\log qT)\right] + yT^{-1}(\log qy)^2 + y^{1/4}(\log y).
\]

In formulas (9) and (10), \(T \) is a parameter we are free to choose; \(q \) is the conductor of \(\lambda \); and \(c \) is a positive absolute constant. The term with \(y^\beta \) in (9) can occur only if \(\lambda \) is an “exceptional” real character (and hence \(l = 2 \)). If \(\lambda \) is an exceptional character, then (8) may not be valid. However, we do know that

\[
\beta < 1 - c_1/q^{1/2}(\log q)^2
\]
for some positive absolute constant \(c_1 \) (see [2, p. 99]). Then one can show that \(y^\theta = O(x/(\log x)^{1+\gamma}) \) for some \(\gamma > 0 \). When sums are subsequently taken over the conductors \(q = p_1 \cdots p_n \), fortunately the exceptional conductors are rather sparse. If these exceptional conductors are \(q_0 < q_1 < q_2 < \cdots \), then \(q_{j+1} > q_j^2 \) for each \(j \) (see [2, p. 98]), and so \(q_j > \exp(2/j) \) for each \(j \). Since \(q_j \leq \exp(\log x/(b \log \log x)) \), then \(j = O(\log \log x) \), and hence the total contribution of all \(y^\theta/\beta \) can be incorporated into the final error term \(o(x(\log \log x)^{\delta}/(\log x)) \) (cf. Lemma 3 of [3]).

It remains to show that \(|R(y, T)| \ll y/(\log qy)\). By choosing \(T = (\log qy)^3 \), we see that the second and third terms on the right side of (10) are \(\ll y/(\log qy) \). Now

\[
\frac{y(\log qy)^2}{\exp\left[\frac{c(\log y)}{\log qT}\right]} \ll \frac{y(\log qy)^2}{\exp\left[\frac{c \log((qy)^{1-\delta})}{(\log qy)/(b(\log \log qy)) + 3(\log \log qy)}\right]}
\]

for any \(0 < \delta < 1 \). We let \(\varepsilon \) satisfy \(0 < \varepsilon < (1/3)c(1-\delta) \). We choose \(y \) large enough so that

\[
3(\log \log qy) < \varepsilon(\log qy)/(\log \log qy),
\]

and we choose \(b > 0 \) so that \(c(1-\delta) \geq 3((1/b) + \varepsilon) \). Then

\[
y(\log qy)^2 \exp[-c(\log y)/(\log qT)] \ll y/(\log qy),
\]

and hence \(|R(y, T)| \ll y/(\log qy)\).

In [3], where \(l \geq 3 \), (7) is needed for the slightly more general case of Hecke characters over \(\mathbb{Q}(\exp(2\pi i/l)) \) instead of Dirichlet characters. However, the methods are essentially the same as those used for Dirichlet characters (e.g., compare the methods in Chapter 14 of [8] with the methods in [2]). Furthermore there are no exceptional characters when \(l \geq 3 \).

Acknowledgment. The author thanks the referee for several helpful suggestions.

Appendix. Some values for \(d_{\infty, r} \) in Theorems 1 and 2 are given below.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(r)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (imag. case)</td>
<td>0.288788</td>
<td>0.577576</td>
<td>0.128350</td>
<td>0.005239</td>
<td>4.7 \times 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>2 (real case)</td>
<td>0.577576</td>
<td>0.385051</td>
<td>0.036672</td>
<td>0.000699</td>
<td>3.0 \times 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.840189</td>
<td>0.157535</td>
<td>0.002272</td>
<td>3.3 \times 10^{-6}</td>
<td>5.1 \times 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.950416</td>
<td>0.049501</td>
<td>8.3 \times 10^{-5}</td>
<td>5.4 \times 10^{-9}</td>
<td>1.4 \times 10^{-14}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.976261</td>
<td>0.023729</td>
<td>1.0 \times 10^{-5}</td>
<td>8.6 \times 10^{-11}</td>
<td>1.5 \times 10^{-17}</td>
<td></td>
</tr>
</tbody>
</table>

References

5. ______, An application of matrices over finite fields to algebraic number theory. Math. Comp. 41
7. F. Gerth and S. Graham, Application of a character sum estimate to a 2-class number density, J.
10. G. Hardy and E. Wright, An introduction to the theory of numbers (4th ed.), Oxford Univ. Press,

Department of Mathematics, University of Texas, Austin, Texas 78712