Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Minimal degrees of faithful characters of finite groups with a T.I. Sylow $ p$-subgroup

Authors: T. R. Berger, P. Landrock and G. O. Michler
Journal: Proc. Amer. Math. Soc. 99 (1987), 15-21
MSC: Primary 20C15
MathSciNet review: 866421
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the classification of the finite simple groups we show in this article that a faithful complex character $ \chi $ of a finite group $ G$ with a nonnormal T.I. Sylow $ p$-subgroup $ P$ has degree $ \chi (1){\text{ > }}\sqrt {\left\vert P \right\vert} - 1$. This result verifies a conjecture of H. S. Leonard [10].

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

PII: S 0002-9939(1987)0866421-1
Article copyright: © Copyright 1987 American Mathematical Society