Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of Huneke concerning multiplicities


Author: Liam O’Carroll
Journal: Proc. Amer. Math. Soc. 99 (1987), 25-28
MSC: Primary 13H15
DOI: https://doi.org/10.1090/S0002-9939-1987-0866423-5
MathSciNet review: 866423
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a theorem by Huneke on multiplicities, and show that the extension surmised by Huneke is a stronger form of the Syzygy Conjecture.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). MR 0269685 (42:4580)
  • [2] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
  • [3] W. Bruns, On the number of elements independent with respect to an ideal, J. London Math. Soc. (2) 22 (1980), 57-62. MR 579808 (81m:13010)
  • [4] W. Bruns, E. G. Evans and P. Griffith, Syzygies, ideals of height two, and vector bundles, J. Algebra 67 (1980), 143-162. MR 595025 (82e:13009)
  • [5] E. G. Evans and P. Griffith, Syzygies, London Math. Soc. Lecture Notes Ser., vol. 106, Cambridge Univ. Press, Cambridge and New York, 1985. MR 811636 (87b:13001)
  • [6] W. Fulton, Introduction to intersection theory in algebraic geometry, CBMS Regional Conf. Ser. in Math., no. 54, Amer. Math. Soc., Providence, R. I., 1984. MR 735435 (85j:14008)
  • [7] A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. 24 (1965). MR 0199181 (33:7330)
  • [8] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43. MR 0349656 (50:2149)
  • [9] C. Huneke, A remark concerning multiplicities, Proc. Amer. Math. Soc. 85 (1982), 331-332. MR 656095 (83m:13016)
  • [10] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 0254021 (40:7234)
  • [11] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [12] M. Nagata, Local rings, Wiley-Interscience, New York, 1962. MR 0155856 (27:5790)
  • [13] D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge Univ. Press, London, 1968. MR 0231816 (38:144)
  • [14] O. Zariski and P. Samuel, Commutative algebra. Vol. II, Springer-Verlag, New York, 1960. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H15

Retrieve articles in all journals with MSC: 13H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866423-5
Keywords: Multiplicity, local ring, syzygy
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society