AN UPPER BOUND FOR THE PERMANENT OF A 3-DIMENSIONAL (0,1)-MATRIX

STEPHEN J. DOW AND PETER M. GIBSON

ABSTRACT. Let $A = (a_{ijk})$ be a 3-dimensional matrix of order n. The permanent of A is defined by

$$\text{per } A = \sum_{\sigma, \tau \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)\tau(i)},$$

where S_n is the symmetric group on $\{1, 2, \ldots, n\}$. Suppose that A is a (0,1)-matrix and that $r_i = \sum_{j,k=1}^{n} a_{ijk}$ for $i = 1, 2, \ldots, n$. In this paper it is shown that $\text{per } A \leq \prod_{i=1}^{n} r_i^{1/r_i}$. A similar bound is then obtained for a second function, the 2-permanent of a 3-dimensional matrix, that is another analogue of the permanent of an ordinary (2-dimensional) matrix.

1. Introduction. It was conjectured by Minc [3] and proved by Brègman [1] that if A is a (0,1)-matrix of order n with row sums r_1, r_2, \ldots, r_n, then

$$\text{per } A \leq \prod_{i=1}^{n} r_i^{1/r_i},$$

where by definition $0^{1/0} = 0$. In this paper it is shown that an analogous result holds for 3-dimensional matrices. The permanent of a 3-dimensional matrix $A = (a_{ijk})$ of order n is defined by

$$\text{per } A = \sum_{\sigma, \tau \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)\tau(i)}$$

where S_n is the symmetric group on $\{1, 2, \ldots, n\}$. We now state our principal result.

THEOREM 1. Let $A = (a_{ijk})$ be a 3-dimensional (0,1)-matrix of order n, and let $r_i = \sum_{j,k=1}^{n} a_{ijk}$ for $i = 1, 2, \ldots, n$. Then

$$\text{per } A \leq \prod_{i=1}^{n} r_i^{1/r_i}.$$

The proof of Theorem 1, presented in §2, is an adaptation of Schrijver’s proof [4] of the Minc-Brègman bound, with the extension to 3-dimensional matrices requiring a number of additional lemmas which may be of some independent interest.

In equation (1) and Theorem 1 the planes of A play the role of the rows and columns of an ordinary (2-dimensional) matrix, where a plane of a 3-dimensional
matrix $A = (a_{ijk})$ is a submatrix obtained by fixing one of the indices i, j, k and letting the other two vary. We could also have taken the analogue of rows and columns to be the lines of A, obtained by fixing two of these indices. In §3 we give a second definition of the permanent of a 3-dimensional matrix, called the 2-permanent, based on this observation. Using a result from [2] which relates these two types of permanents we obtain an upper bound for the 2-permanent of a 3-dimensional $(0, 1)$-matrix similar to the one given in Theorem 1, with plane sums replaced by line sums.

2. Proof of the principal result. We write N, Z, and R^+ to denote, respectively, the set of natural numbers, the set of integers, and the set of positive real numbers. Also, for any real number x, we use the notation $\lfloor x \rfloor = \max\{k \in Z : k \leq x\}$ and $\lceil x \rceil = \min\{k \in Z : x < k\}$. The first lemma appears in [4].

Lemma 1. If $t = \sum_{i=1}^{n} t_i$, $t_i \in R^+$, then $t^t \leq n^t \prod_{i=1}^{n} t_i^t$.

Lemma 2. For all $n \in N$, $n^{1/n} (n + 2)^{1/(n+2)} \leq (n + 1)^{2/(n+1)}$.

Proof. It is well known that if $x_1, x_2, \ldots, x_k \in R^+$, then $\prod_{i=1}^{k} x_i \leq \bar{x}^k$ where $\bar{x} = \left(\sum_{i=1}^{k} x_i \right)/k$. Let $x_i = i$ for $i = 1, 2, \ldots, n$, $x_i = i-n$ for $i = n+1, n+2, \ldots, 2n$, and $x_i = n+2$ for $i = 2n+1, 2n+2, \ldots, n^2+3n$. Then

$$
\prod_{i=1}^{n^2+3n} x_i = n!^2 (n + 2)^{n^2+n}
$$

and

$$
\sum_{i=1}^{n^2+3n} x_i = (n^2 + 3n)(n + 1).
$$

Hence the inequality above becomes $n!^2 (n + 2)^{n^2+n} \leq (n + 1)^{n^2+3n}$, which is equivalent to the desired inequality.

Lemma 3. Suppose that a function $f: N \rightarrow R^+$ has the property that

$$
f(x)f(x + 2) \leq (f(x + 1))^2
$$

for all $x \in N$, and that $x_1, x_2, \ldots, x_k \in N$. Let $\sum_{i=1}^{k} x_i = k\bar{x} = k\lfloor \bar{x} \rfloor + k_2 \lceil \bar{x} \rceil$, where $k_1, k_2 \in Z$, $k_1, k_2 \geq 0$, and $k_1 + k_2 = k$. Then

$$
\prod_{i=1}^{k} f(x_i) \leq f(\lfloor \bar{x} \rfloor)^{k_1} f(\lceil \bar{x} \rceil)^{k_2}.
$$

Proof. It follows from induction on n that

(2) $f(x)f(x + n) \leq f(x + 1)f(x + n - 1)$

for all $x, n \in N$. To see this note that the inductive step is

$$
f(x)f(x + n + 1) = \frac{f(x)f(x + 2)f(x + 1)f(x + n)}{f(x + 1)f(x + 2)} \leq f(x + 1)f(x + n).
$$

By (2), if there exist p and q such that $x_p - x_q > 1$ and we let $x'_p = x_p - 1$, $x'_q = x_q + 1$, and $x'_i = x_i$ for $i \neq p, q$, then $\prod_{i=1}^{k} f(x_i) \leq \prod_{i=1}^{k} f(x'_i)$. By repeating this step the upper bound eventually becomes $f(\lfloor \bar{x} \rfloor)^{k_1} f(\lceil \bar{x} \rceil)^{k_2}$.
LEMMA 4. Let $f(x) = x^{1/x}$ for $x \in \mathbb{N}$. Suppose that $n, p, r \in \mathbb{N}$, $n \geq 3$, and $p \leq (r - 1)/(n - 1)$. Then

$$f(r - p - 1)^{r - pn + p - 1}f(r - p)^{(p + 1)n - p - r} \leq (r - 1)!r^{n/r - 1}.$$

PROOF. Let $k \in \mathbb{N}$, $k \leq p$. Then $r - k - 1 > 0$. Therefore, by Lemma 2, $f(r - k - 1)f(r - k + 1) \leq f(r - k)^2$. Since $k \leq (r - 1)/(n - 1)$, we can raise both sides of this inequality to the power $r - kn + k - 1$ to obtain

$$f(r - k - 1)^{r - kn + k - 1}f(r - k + 1)^{r - kn + k - 1} \leq f(r - k)^2(r - kn + k - 1).$$

This inequality is equivalent to

$$f(r - k - 1)^{r - kn + k - 1}f(r - k)^{(k + 1)n - k - r} \leq f(r - k)^{r - (k - 1)n + k - 2}(r - k + 1)^{kn - k + 1 - r}.$$

The desired inequality can now be obtained by successively applying (3) with $k = p, p - 1, p - 2, \ldots, 1$.

LEMMA 5. Let $x_1, x_2, \ldots, x_{n-1}, r \in \mathbb{N}$ with $n > 2$. If $\sum_{i=1}^{n-1} x_i \leq (n - 2)r + 1$, then

$$\prod_{i=1}^{n-1} x_i^{1/x_i} \leq (r - 1)!r^{n/r - 1}.$$

PROOF. Since $x^{1/x}$ is increasing in x we may assume that $\sum_{i=1}^{n-1} x_i = (n - 2)r + 1$. Hence

$$\bar{x} = \frac{(n - 2)r + 1}{n - 1} = r - \frac{r - 1}{n - 1}.$$ Let $p = [(r - 1)/(n - 1)]$. Then $[\bar{x}] = \lfloor \bar{x} \rfloor = r - p$ if x is an integer and $[\bar{x}] = r - p - 1$, $\lfloor \bar{x} \rfloor = r - p$ otherwise. Since

$$(r - pn + p - 1)(r - p - 1) + ((p + 1)n - p - r)(r - p) = (n - 2)r + 1$$

we can apply Lemma 3 with $f(x) = x^{1/x}$, $k = n - 1$, $k_1 = r - pn + p - 1$, and $k_2 = (p + 1)n - p - r$. (When $\lfloor \bar{x} \rfloor = \lceil \bar{x} \rceil = r - p$ we have $k_1 = 0$.) Therefore Lemmas 3 and 4 imply that

$$\prod_{i=1}^{n-1} x_i^{1/x_i} \leq f(r - p - 1)^{r - pn + p - 1}f(r - p)^{(p + 1)n - p - r} \leq (r - 1)!r^{n/r - 1}.$$

LEMMA 6. If $B = (b_{jk})$ is a $(0, 1)$-matrix of order n with $\sum_{j, k=1}^{n} b_{jk} = r$, then

$$\sum_{i=1}^{n-1} \sum_{j, k \neq i} b_{jk} \leq (n - 2)r + 1.$$

PROOF.

$$\sum_{i=1}^{n-1} \sum_{j, k \neq i} b_{jk} = \sum_{i=1}^{n-1} \left(r - \sum_{j=1}^{n} b_{ji} - \sum_{k=1}^{n} b_{ik} + b_{ii} \right)$$

$$= (n - 3)r + \sum_{j=1}^{n} b_{jn} + \sum_{k=1}^{n} b_{nk} + \sum_{i=1}^{n-1} b_{ii}$$

$$\leq (n - 3)r + r + 1 = (n - 2)r + 1.$$
We now show how Schrijver’s proof [4] of the Minc-Brègman bound can be altered to prove Theorem 1.

Proof of Theorem 1. The proof is by induction on \(n \). Clearly the theorem holds for \(n = 1 \). Let \(n > 1 \). It suffices to assume that \(r_i \in \mathbb{N} \) for \(i = 1, 2, \ldots, n \). Let \(A_{ijk} \) denote the 3-dimensional submatrix of \(A \) of order \(n - 1 \) obtained by deleting the three planes through cell \((i,j,k)\). Let

\[
S = \left\{ (\sigma, \tau) : \prod_{i=1}^{n} a_{i\sigma(i)r(i)} = 1 \right\}.
\]

Then \(|S| = \text{per} A \). Apply Lemma 1 with \(t = \text{per} A = \sum_{j,k;a_{ijk}=1} \text{per} A_{ijk} \) for \(i = 1, 2, \ldots, n \), to obtain

\[
\left(\text{per} A \right)^n \text{per} A = \prod_{i=1}^{n} (\text{per} A)_{\text{per} A}^n \\
\leq \prod_{i=1}^{n} r_i \text{per} A \prod_{j,k;a_{ijk}=1} (\text{per} A_{ijk})_{\text{per} A_{ijk}}.
\]

For each \(i \) we have

\[
\prod_{j,k;a_{ijk}=1} (\text{per} A_{ijk})_{\text{per} A_{ijk}} = \prod_{j,k;a_{ijk}=1} (\text{per} A_{ijk})_{\{ (\sigma, \tau) \in S : \sigma(i)=j, \tau(i)=k \}}
\]

\[
= \prod_{(\sigma, \tau) \in S} \text{per} A_{i\sigma(i)r(i)}.
\]

By the induction hypothesis,

\[
\text{per} A_{i\sigma(i)r(i)} \leq \prod_{p \neq i} r(p, i)!^{1/r(p, i)}
\]

where

\[
r(p, i) = \sum_{j,k : j \neq \sigma(i), k \neq \tau(i)} a_{pjk}.
\]

Combining the inequalities above we have

\[
\left(\text{per} A \right)^n \text{per} A \leq \prod_{i=1}^{n} r_i \text{per} A \prod_{(\sigma, \tau) \in S} \prod_{p \neq i} r(p, i)!^{1/r(p, i)}
\]

\[
= \prod_{(\sigma, \tau) \in S} \left(\prod_{i=1}^{n} r_i \right) \prod_{i=1}^{n} \prod_{p \neq i} r(p, i)!^{1/r(p, i)}
\]

\[
= \prod_{(\sigma, \tau) \in S} \left(\prod_{i=1}^{n} r_i \right) \prod_{p=1}^{n} \prod_{i \neq p} r(p, i)!^{1/r(p, i)}.
\]
Fix \(\sigma, \tau, \) and \(p \) and let \(b_{jk} = a_{p\sigma(j)\tau(k)} \). Then \(\sum_{j,k} b_{jk} = r_p \) and for each \(i \),

\[
\sum_{j,k \neq i, k \neq i} r(p, i) = r_p.
\]

Hence, by Lemma 6,

\[
\sum_{i \neq p} r(p, i) \leq (n - 2)r_p + 1.
\]

Therefore, by Lemma 5, if \(n > 2 \), then

\[
\prod_{i \neq p} r(p, i)^{1/r(p, i)} \leq (r_p - 1)!r_p^{1/n/r_p - 1}.
\]

Moreover, it is easy to see that this inequality also holds for \(n = 2 \). Therefore,

\[
\frac{(\text{per } A)^n}{\text{per } A} \leq \prod_{(\sigma, \tau) \in S} \left(\prod_{i=1}^{n} r_i \right) \prod_{p=1}^{n} (r_p - 1)!r_p^{1/n/r_p - 1}
\]

\[
= \prod_{(\sigma, \tau) \in S} \prod_{p=1}^{n} r_p^{1/n/r_p} = \left(\prod_{i=1}^{n} r_i^{1/r_i} \right)^n
\]

and the theorem follows.

For some values of the \(r_i \) it is easy to construct matrices \(A \) such that equality holds in Theorem 1. Let \(A_m = (a_{ijk}) \) denote the 3-dimensional \((0, 1)\)-matrix of order \(m \) with \(a_{ij} = 1 \) for \(i, j = 1, 2, \ldots, m \), and \(a_{ijk} = 0 \) otherwise. Then \(r_i = \sum_{j,k=1}^{n} a_{ijk} = m \) for \(i = 1, 2, \ldots, m \), and \(\text{per } A_m = m! \). Now let \(n_1, n_2, \ldots, n_t \) be a partition of \(n \), and let \(A \) be the direct sum of \(A_{n_1}, A_{n_2}, \ldots, A_{n_t} \). It follows that \(A \) is a 3-dimensional \((0, 1)\)-matrix of order \(n \) such that equality holds in Theorem 1.

3. The 2-permanent. Theorem 1 can be used to obtain another extension of the Minc-Brègman inequality to 3-dimensional matrices. Let \(A = (a_{ijk}) \) be a 3-dimensional \((0, 1)\)-matrix of order \(n \). The planes of \(A \) are the submatrices obtained by fixing one of \(i, j, k \), and the lines of \(A \) are the submatrices obtained by fixing two of \(i, j, k \). Observe that the permanent (or 1-permanent) of \(A \) is equal to the summation of all products of \(n \) entries of \(A \), no two entries from the same plane. Similarly, the 2-permanent of \(A \) is defined to be the summation of all products of \(n^2 \) entries of \(A \), no two entries from the same line \([2]\). We have the following upper bound for the 2-permanent of a \((0, 1)\)-matrix.

Theorem 2. Let \(A = (a_{ijk}) \) be a 3-dimensional \((0, 1)\)-matrix of order \(n \), and let \(r_{ij} = \sum_{k=1}^{n} a_{ijk} \) for \(i, j = 1, 2, \ldots, n \). Then

\[
2\text{-per } A \leq \prod_{i,j=1}^{n} r_{ij}^{1/r_{ij}}.
\]

Proof. As shown by the authors \([2]\), there exists a 3-dimensional \((0, 1)\)-matrix \(B = (b_{ijk}) \) of order \(n^2 \) such that \(\text{per } B = 2\text{-per } A \). Moreover, \(B \) can be chosen so that if \(s_i = \sum_{j,k=1}^{n^2} b_{ijk} \) for \(i = 1, 2, \ldots, n^2 \), then \(\{s_i : i = 1, 2, \ldots, n^2\} = \{r_{ij} : i, j = 1, 2, \ldots, n\} \). Therefore, if Theorem 1 is applied to \(B \) the desired upper bound on 2-per \(A \) is obtained.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, HUNTSVILLE, ALABAMA 35899