Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Jantzen filtration of a certain class of Verma modules


Author: Jong Min Ku
Journal: Proc. Amer. Math. Soc. 99 (1987), 35-40
MSC: Primary 17B67; Secondary 17B10, 22E47
DOI: https://doi.org/10.1090/S0002-9939-1987-0866425-9
MathSciNet review: 866425
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = {N_ + } \oplus H \oplus {N_ - }$ be a Kac-Moody Lie algebra. For each $ M$ in the category $ \mathcal{O}$ of $ G$-modules, there is a filtration $ {({M_i})_{i \geq 0}}$ by $ G$-submodules of $ M$ naturally associated with the set $ \left\{ {\upsilon \in M\left\vert {{N_ + }\upsilon } \right. = 0} \right\}$. If $ G$ is symmetrizable and $ M$ is a Verma module, $ {M_i} = {M^i}$ for all $ i$ if and only if $ \left[ {M:L(\mu )} \right] = \dim \operatorname{Hom}_G(M(\mu ),M)$ for all $ \mu \in {H^ * }$ where $ {({M^i})_{i \geq 0}}$ is the Jantzen filtration of $ M$. The main tools used are the nondegenerate form on each $ {M^i}/{M^{i + 1}}$ together with the $ \Gamma $-operator of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] V. V. Deodhar, O. Gabber, and V. G. Kac, Structure of some categories of representations of infinite dimensional Lie algebras, Adv. in Math. 45 (1982), 91-116. MR 663417 (83i:17012)
  • [2] J. C. Jantzen, Modulen mit einem höchsten Gewicht, Lecture Notes in Math., vol. 750, Springer-Verlag, Berlin and New York, 1979. MR 552943 (81m:17011)
  • [3] V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite dimensional Lie algebras, Adv. in Math. 34 (1979), 97-108. MR 547842 (81d:17004)
  • [4] A. Rocha-Caridi and N. R. Wallach, Highest weight modules over infinite dimensional graded Lie algebras: resolutions, filtrations and character formulas, Trans. Amer. Math. Soc. 277 (1983), 133-162. MR 690045 (84m:17005)
  • [5] N. N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6 (1972), 307-312.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B67, 17B10, 22E47

Retrieve articles in all journals with MSC: 17B67, 17B10, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866425-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society