Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On analytic slit mappings in the class $ \Sigma$


Authors: Yusuf Abu-Muhanna and Y. J. Leung
Journal: Proc. Amer. Math. Soc. 99 (1987), 44-48
MSC: Primary 30C55
DOI: https://doi.org/10.1090/S0002-9939-1987-0866427-2
MathSciNet review: 866427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that any analytic slit mapping is a support point in $ \Sigma $. As an application, we use Schiffer's theory to show that a rational slit mapping must be of the form $ z{\text{ + }}{a_0} + {a_1}/(z - {z_1})$.


References [Enhancements On Off] (What's this?)

  • [1] D. Aharonov, A note on slit mapping, Bull. Amer. Math. Soc. 75 (1969), 836-839. MR 0259083 (41:3725)
  • [2] A. Chang, M. Schiffer and G. Schober, On the second variation for univalent functions, J. Analyse Math. 40 (1981), 203-238. MR 659792 (84b:30022)
  • [3] P. Duren, Univalent functions, Springer-Verlag, New York, 1983. MR 708494 (85j:30034)
  • [4] -, Truncation, Contemporary Math. (to appear).
  • [5] D. Hamilton, Extreme points of $ \Sigma $, Proc. Amer. Math. Soc. 85 (1982), 393-396. MR 656110 (83m:30012)
  • [6] J. Jenkins, Univalent functions and conformal mappings, Springer-Verlag, Berlin, 1958. MR 0096806 (20:3288)
  • [7] R. Kühnau, Review of the article Support points with maximum radial angle, Math. Reviews 84f (1984), 2204.
  • [8] Y. Leung and G. Schober, Low order coefficient estimates in the class $ \Sigma $, Ann. Acad. Sci. Fenn. Ser. A I Math. (to appear). MR 826348 (87g:30017)
  • [9] A. Pfluger, Lineare extremalprobleme bei schlichten funktionen, Ann. Acad. Sci. Fenn. Ser. A I Math. 489 (1971). MR 0296276 (45:5337)
  • [10] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
  • [11] S. Ruscheweyh, private communication.
  • [12] G. Schober, Univalent functions--Selected topics, Lecture Notes in Math., volume 478, Springer-Verlag, Berlin and New York, 1975. MR 0507770 (58:22527)
  • [13] -, Some conjectures for the class $ \Sigma $, Contemporary Math. (to appear). MR 789441
  • [14] U. Srebro, Is the slit of rational slit mapping in $ S$ straight? Proc. Amer. Math. Soc. 96 (1986), 65-66. MR 813811 (87e:30029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C55

Retrieve articles in all journals with MSC: 30C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866427-2
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society