Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convolution estimates for some measures on curves


Author: Daniel M. Oberlin
Journal: Proc. Amer. Math. Soc. 99 (1987), 56-60
MSC: Primary 42B15; Secondary 42A85, 43A22
DOI: https://doi.org/10.1090/S0002-9939-1987-0866429-6
MathSciNet review: 866429
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ \lambda $ is a smooth measure on a curve in $ {R^3}$. It is shown that $ \lambda * {L^p}({R^3}) \subset {L^q}({R^3})$ under certain conditions on $ \lambda ,p$ and $ q$.


References [Enhancements On Off] (What's this?)

  • [1] M. Christ, Convolution estimates for Cantor-Lebesgue measures, preprint.
  • [2] I. M. Gelfand and G. E. Shilov, Generalized functions, Academic Press, New York, 1964. MR 0166596 (29:3869)
  • [3] L. Hörmander, Estimates for translation-invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • [4] W. Littman, $ {L^p} - {L^q}$ estimates for singular integral operators, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R.I., 1973. MR 0358443 (50:10909)
  • [5] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 87 (1958), 159-172. MR 0092943 (19:1184d)
  • [6] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [7] A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15, 42A85, 43A22

Retrieve articles in all journals with MSC: 42B15, 42A85, 43A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866429-6
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society