Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Perturbations near zero of the leading coefficient of solutions to a nonlinear differential equation

Author: Vadim Komkov
Journal: Proc. Amer. Math. Soc. 99 (1987), 93-104
MSC: Primary 34C15; Secondary 03H05, 26E35, 58F05
MathSciNet review: 866436
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The equation

$\displaystyle \frac{d}{{dt}}\left( {a\left( t \right) \cdot \psi \left( x \righ... ...eft( x \right) \cdot \frac{{dx}}{{dt}} + c\left( t \right)x = g\left( t \right)$

that generalizes the more commonly studied selfadjoint second order equation

$\displaystyle \frac{d}{{dt}}\left( {a\left( t \right)\frac{{dx}}{{dt}}} \right) + c\left( t \right)x = g\left( t \right)$

occurs in celestial dynamics, in the study of gyroscopic systems, and in other problems of nonlinear mechanics. Using techniques of nonstandard analysis we derive some properties of the "duck"-type cycles for the solutions of this equation.

References [Enhancements On Off] (What's this?)

  • [1] Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1952 (French). Publié avec la collaboration de Jacques Lévy. Publiées sous les auspices de l’Académie des Sciences par la Section de Géométrie. Tome VII. MR 0046985
  • [2] Vadim Komkov, Continuability and estimates of solutions of (𝑎(𝑡)𝜓(𝑥)𝑥′)′+𝑐(𝑡)𝑓(𝑥)=0, Ann. Polon. Math. 30 (1974), 125–137. MR 0355152,
  • [3] V. Komkov, Asymptotic behavior of nonlinear differential equations via nonstandard analysis. III. Boundedness and monotone behavior of the equation (𝑎(𝑡)𝜑(𝑥)𝑥′)′+𝑐(𝑡)𝑓(𝑥)=𝑞(𝑡), Ann. Polon. Math. 38 (1980), no. 2, 101–108. MR 599234,
  • [4] Abraham Robinson, Introduction to model theory and to the metamathematics of algebra, North-Holland Publishing Co., Amsterdam, 1963. MR 0153570
  • [5] -, Non-standard analysis, North-Holland, Amsterdam, 1962.
  • [6] W. A. J. Luxemberg, What is non-standard analysis, Papers in the Foundations of Mathematics, Math. Assoc. Amer., Slaught Memorial Papers No. 13, 1966, pp. 38-67.
  • [7] P. Kart′e, Singular perturbations of ordinary differential equations and nonstandard analysis, Uspekhi Mat. Nauk 39 (1984), no. 2(236), 57–76 (Russian). Translated from the French by A. K. Zvonkin. MR 740000
  • [8] D. P. Merkin, Gyroscopic motion, Nauka, Moscow, 1974.
  • [9] M. Diener, Etude générique des canards, Thèse, Strasbourg, 1981.
  • [10] Jane Cronin-Scanlon, Entrainment of frequency in singularly perturbed systems, Abstract Amer. Math. Soc. 6 (1985), Abstract 817-34-148.
  • [11] A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current ant its application to conduction and excitation in nerves, J. Physiol. 171 (1952), 500-544.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C15, 03H05, 26E35, 58F05

Retrieve articles in all journals with MSC: 34C15, 03H05, 26E35, 58F05

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society