Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Powers of generators of holomorphic semigroups


Author: Ralph deLaubenfels
Journal: Proc. Amer. Math. Soc. 99 (1987), 105-108
MSC: Primary 47D05; Secondary 47B44
DOI: https://doi.org/10.1090/S0002-9939-1987-0866437-5
MathSciNet review: 866437
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that when the (possibly unbounded) linear operator $ - A$ generates a bounded holomorphic semigroup of angle $ \theta $, and $ n\left( {\pi /2 - \theta } \right) < \pi /2$, then $ - {A^n}$ generates a bounded holomorphic semigroup of angle $ \pi /2 - n\left( {\pi /2 - \theta } \right)$. When $ - A$ generates a bounded holomorphic semigroup of angle $ \pi /2$, then, for all $ n$, $ - {A^n}$ generates a bounded holomorphic semigroup of angle $ \pi /2$.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Goldstein, Some remarks on infinitesimal generators of analytic semigroups, Proc. Amer. Math. Soc. 22 (1969), 91-93. MR 0243384 (39:4706)
  • [2] M. Reed and B. Simon, Methods of modern mathematical physics, Part II, Fourier analysis, self-adjointness, Academic Press, New York, 1975. MR 0493420 (58:12429b)
  • [3] J. A. van Casteren, Generators of strongly continuous semigroups, Research Notes in Math., 115, Pitman, 1985.
  • [4] K. Yosida, Functional analysis, (2nd ed.), Grundlehren Math. Wiss., Band 123, Springer-Verlag, Berlin and New York, 1968. MR 0239384 (39:741)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 47B44

Retrieve articles in all journals with MSC: 47D05, 47B44


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866437-5
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society