Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A mean ergodic theorem in Banach spaces


Author: Takeshi Yoshimoto
Journal: Proc. Amer. Math. Soc. 99 (1987), 115-118
MSC: Primary 47A35
DOI: https://doi.org/10.1090/S0002-9939-1987-0866439-9
MathSciNet review: 866439
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma = \left\{ {{U_t}:t \in \Lambda } \right\}\left( {\Lambda = {{\mathbf{Z}... ... \left\{ 0 \right\}{\text{or }}{{\mathbf{R}}^ + } - \left\{ 0 \right\}} \right)$ be a commuting family of nonexpansive affine operators in a Banach space $ X$ satisfying the following conditions:

(i) there is a function $ M\left( {x\left\vert \Gamma \right.} \right) \geq 0$ defined on $ X$ such that

$\displaystyle \left\Vert {{U_{t + s}}x - {U_t}{U_s}x} \right\Vert \leq M\left( ... ...ft\vert \Gamma \right.} \right)\quad \left( {s,t \in \Lambda ,x \in X} \right),$

(ii)

$\displaystyle \sup\left\{ {{t^{ - 1}}\left\Vert {{U_t}x} \right\Vert:t \in \Lam... ...K\left( {x\left\vert \Gamma \right.} \right) < \infty \left( {x \in X} \right).$

Then it is proved that if $ \left\{ {{t^{ - 1}}{U_t}x:t \in \Lambda } \right\}$ is relatively compact for $ x \in X$, the limit $ X -\lim_{t \to \infty }{t^{ - 1}}{U_t}x = \bar x$ exists in $ X$ and $ \overline {{U_t}x} = \overline x \left( {t \in \Lambda } \right)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A35

Retrieve articles in all journals with MSC: 47A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866439-9
Article copyright: © Copyright 1987 American Mathematical Society