On differentiability of metric projections in . I. Boundary case

Author:
Alexander Shapiro

Journal:
Proc. Amer. Math. Soc. **99** (1987), 123-128

MSC:
Primary 41A50; Secondary 41A65

MathSciNet review:
866441

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with metric projections onto a closed subset of a finite-dimensional normed space. Necessary and in a sense sufficient conditions for directional differentiability of a metric projection at a boundary point of are given in terms of approximating cones. It is shown that if is defined by a number of inequality constraints and a constraint qualification holds, then the approximating cone exists.

**[1]**Jean-Pierre Aubin and Arrigo Cellina,*Differential inclusions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR**755330****[2]**Herman Chernoff,*On the distribution of the likelihood ratio*, Ann. Math. Statistics**25**(1954), 573–578. MR**0065087****[3]**John M. Danskin,*The theory of max-min and its application to weapons allocation problems*, Econometrics and Operations Research, Vol. V, Springer-Verlag New York, Inc., New York, 1967. MR**0228260****[4]**V. F. Dem′yanov and A. M. Rubinov,*On quasidifferentiable mappings*, Travaux Sém. Anal. Convexe**11**(1981), no. 2, 3–21 (English, with German and Russian summaries). MR**694799****[5]**A. Haraux,*How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities*, J. Math. Soc. Japan**29**(1977), no. 4, 615–631. MR**0481060****[6]**O. L. Mangasarian and S. Fromovitz,*The Fritz John necessary optimality conditions in the presence of equality and inequality constraints*, J. Math. Anal. Appl.**17**(1967), 37–47. MR**0207448****[7]**G. P. McCormick and R. A. Tapia,*The gradient projection method under mild differentiability conditions*, SIAM J. Control**10**(1972), 93–98. MR**0319578****[8]**R. R. Phelps,*Metric projections and the gradient projection method in Banach spaces*, SIAM J. Control Optim.**23**(1985), no. 6, 973–977. MR**809544**, 10.1137/0323055**[9]**R. Tyrrell Rockafellar,*Convex analysis*, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR**0274683****[10]**Alexander Shapiro,*Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints*, Biometrika**72**(1985), no. 1, 133–144. MR**790208**, 10.1093/biomet/72.1.133**[11]**Alexander Shapiro,*Second order sensitivity analysis and asymptotic theory of parametrized nonlinear programs*, Math. Programming**33**(1985), no. 3, 280–299. MR**816106**, 10.1007/BF01584378**[12]**Eduardo H. Zarantonello,*Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 237–341. MR**0388177**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A50,
41A65

Retrieve articles in all journals with MSC: 41A50, 41A65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0866441-7

Keywords:
Metric projection,
normed space,
distance function,
directional differentiability,
approximating cone

Article copyright:
© Copyright 1987
American Mathematical Society