Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On unilateral and bilateral $ n$th Peano derivatives


Authors: M. Laczkovich, D. Preiss and C. Weil
Journal: Proc. Amer. Math. Soc. 99 (1987), 129-134
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9939-1987-0866442-9
MathSciNet review: 866442
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A valid proof is given of the assertion that an $ n$th Peano derivative that is allowed to attain infinite values is still a function of Baire class one. Also, it is shown that a finite, unilateral $ n$th Peano derivative is a function of Baire class one. Finally, an example is given that if infinite values are allowed (actually just $ + \infty $) a unilateral $ n$th Peano derivative need not be of Baire class one.


References [Enhancements On Off] (What's this?)

  • [1] P. Bullen and S. Mukopadhyay, On the Peano derivatives, Canad. J. Math 25 (1973), 127-140. MR 0311845 (47:407)
  • [2] J. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124-125. MR 0019712 (8:451e)
  • [3] M. Corominas, Contribution à la théorie de la dérivation supérieur, Bull. Soc. Math. France 81 (1953), 176-222.
  • [4] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math 25 (1935), 273-326.
  • [5] M. Evans and C. Weil, Peano derivatives: A survey, Real Anal. Exchange 7 (1981-82), 5-23. MR 646631 (83g:26008)
  • [6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, 1966. MR 0217751 (36:840)
  • [7] C. Neugebauer, Darboux functions of Baire class one and derivatives, Proc. Amer. Math. Soc. 13 (1962), 838-843. MR 0143850 (26:1400)
  • [8] H. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 0062207 (15:944d)
  • [9] G. Tolstoff, Sur la dérivée approximative exacte, Rec. Math. (Mat. Sb.) N.S. 4 (1938), 499-504.
  • [10] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. 33 (1971), 313-324. MR 0285678 (44:2896)
  • [11] C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. MR 0176007 (31:283)
  • [12] Z. Zakorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. MR 0037338 (12:247c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866442-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society