ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF THE SECOND ORDER DIFFERENCE EQUATION

ANDRZEJ DROZDOWICZ AND JERZY POPENDA

ABSTRACT. The second order difference equation

\(\Delta^2 x_n + p_n f(x_n) = 0 \)

is considered. The results give a necessary and sufficient condition for some solution of \((E) \) to have asymptotic behavior \(x_n \sim C = \text{const. as } n \to \infty \).

Introduction. The asymptotic behavior of the solutions of second order differential equations have been considered by R. A. Moore and Z. Nehari [4], W. F. Trench [9], and P. Waltman [10]. The next results for nth order nonhomogeneous differential equations was given by T. G. Hallam [1, 2]. Similar problems with regard to second order difference equations were investigated by J. W. Hooker and W. T. Patula [3] and J. Popenda [7].

In this paper the asymptotic behavior of solutions of the second order difference equation

\(\Delta^2 x_n + p_n f(x_n) = 0 \)

will be considered. A necessary and sufficient condition for some solution \(x \) of \((E) \) to have the asymptotic behavior

\[\lim_{n \to \infty} x_n = C, \]

where \(C \) is a constant such that \(f(C) \neq 0 \), will be proved.

Let \(N \) denote the set of positive integers and \(R \) the set of real numbers. Throughout this paper it will be assumed that \(f: R \to R \) is continuous and \(p: N \to R_+ \cup \{0\} \).

For a function \(a: N \to R \) we introduce the difference operator \(\Delta \) by

\[\Delta a_n = a_{n+1} - a_n, \quad \Delta^2 a_n = \Delta(\Delta a_n), \]

where \(a_n = a(n) \), \(n \in N \). Moreover let \(\sum_{j=k}^{k-1} a_j = 0 \). One can observe that if \(f \) is definite and finite on \(R \) then \((E) \) possesses solutions for any two initial values \(x_1, x_2 \in R \).

1. A necessary condition.

Theorem 1. A necessary condition for the existence of a solution \(x \) of \((E) \) which possesses asymptotic behavior \((AB) \) is

\[\sum_{j=1}^{\infty} j p_j < \infty. \]
PROOF. Let x denote a solution of (E) having the property (AB), i.e. $x_n \to C$ for $n \to \infty$. Then
\begin{equation}
\Delta x_n \to 0 \quad \text{as } n \to \infty.
\end{equation}
Assume that $f(C) > 0$. (The case $f(C) < 0$ with some modifications can be considered in a similar way.) The continuity of f implies that there exists $\varepsilon > 0$ such that $f(t) > 0$, $t \in I := [C - \varepsilon, C + \varepsilon]$ for some $\varepsilon > 0$. Since $x_n \to C$ as $n \to \infty$, there exists $n_1 = N(\varepsilon)$ such that for each $n \geq n_1$, $x_n \in [C - \varepsilon, C + \varepsilon]$. Therefore
\[f(x_n) \geq C_0 := \min_{t \in I} f(t) > 0 \quad \text{for } n \geq n_1. \]
Hence
\begin{equation}
\Delta x_n - \Delta x_k = - \sum_{j=k}^{n-1} p_j f(x_j) \leq -C_0 \sum_{j=k}^{n-1} p_j \quad \text{for } k \geq n_1.
\end{equation}
Using (1.1) we get
\begin{equation}
C_0 \sum_{j=k}^{\infty} p_j \leq \Delta x_k \quad \text{for } k \geq n_1.
\end{equation}
Therefore the series $\sum_{j=k}^{\infty} p_j$ is convergent. Summing (1.2) over n and tending to infinity with an upper limit we yield
\begin{equation}
C_0 \sum_{j=n_1}^{\infty} \sum_{i=j}^{\infty} p_i \leq C - x_{n_1}.
\end{equation}
From this fact it follows that the series $\sum_{j=n_1}^{\infty} \sum_{i=j}^{\infty} p_i$ converges. Since
\[\sum_{j=n_1}^{\infty} \sum_{i=j}^{\infty} p_i = \sum_{j=n_1}^{\infty} (j + 1 - n_1) p_j, \]
the series $\sum_{j=n_1}^{\infty} (j + 1 - n_1) p_j$ is also convergent. By observing that
\[\sum_{j=n_1}^{\infty} j p_j = \sum_{j=n_1}^{\infty} (j + 1 - n_1) p_j + (n_1 - 1) \sum_{j=n_1}^{\infty} p_j, \]
we see that the series $\sum_{j=n_1}^{\infty} j p_j$ is convergent. Q.E.D.

REMARK 1. From (1.2) it follows that $\Delta x_k \geq 0$ for $k \geq n_1$. Therefore the solution x_n is increasing for $n \geq n_1$. We see that $x_l \leq C$ for $l \geq n_1$. This result means that if $f(C) > 0$ then the solution of (E) which possesses the asymptotic behavior (AB) monotonically approaches C from below. If $f(C) < 0$, then x_n must monotonically tend to C from above.

2. A sufficient condition.

THEOREM 2. For every $k \in N$ let
\begin{equation}
(*) \quad i_R + p_k f: R \to R \text{ be a surjection (} i_R \text{ denotes an identity function on } R). \end{equation}
A sufficient condition for the existence of a solution x of (E) which possesses the asymptotic behavior (AB) is (NS).

PROOF. The cases $C > 0$ and $f(C) > 0$ will be considered. (The other cases, i.e. $C < 0$ or $f(C) < 0$, with some modifications can be shown in a similar way.)
Let (NS) hold. Hence

\[(2.1) \quad \lim_{n \to \infty} \sum_{j=n}^{\infty} jp_j = 0.\]

One can observe that the sequence \(\{\sum_{j=n}^{\infty} jp_j\}_{n=1}^{\infty}\) is nonincreasing. Analogous to the proof of Theorem 1 there exists an interval \(I = [C-\varepsilon, C+\varepsilon]\) such that \(f(t) > 0, t \in I\) for some \(\varepsilon > 0\). Denoting \(C_1 := \max_{t \in I^-} f(t)\), where \(I^- = [C-\varepsilon, C]\) from (2.1), we obtain

\[C_1 \sum_{j=n}^{\infty} jp_j \leq \varepsilon \quad \text{for all } n \geq N(\varepsilon).\]

Let us set

\[n_2 = \min \left\{ n \in N : C_1 \sum_{j=n}^{\infty} jp_j \leq \varepsilon \right\}.\]

Let \(l_\infty\) denote the Banach space of bounded sequences \(x = \{h_i\}_{i=1}^{\infty}\) with norm \(\|x\| = \sup_{i \geq 1} |h_i|\). Moreover let us define the set \(T \subset l_\infty\) in the following way:

\[x = \{h_i\}_{i=1}^{\infty} \in T \quad \text{if} \quad \begin{cases} h_k = C & \text{for } k = 1, 2, \ldots, n_2 - 1, \\ h_k \in I_k^- & \text{for } k \geq n_2, \end{cases}\]

where

\[I_k^- := \left[C - C_1 \sum_{j=k}^{\infty} jp_j, C \right], \quad k \geq n_2.\]

It is easy to show that \(T\) is bounded, convex and closed in \(l_\infty\). We will show that \(T\) is compact. Set \(\text{diam}[a, b] = b - a; \ a, b \in R\). By (NS) it follows that \(\text{diam} I_k^- \to 0\) for \(n \to \infty\). Choose any \(\varepsilon_1 > 0\). If \(\varepsilon_1\) is such that \(\text{diam} I_{n_2}^- < \varepsilon_1\), then the element \(v = \{C, C, C, \ldots\} \in l_\infty\) is an \(\varepsilon_1\)-net. The case \(\text{diam} I_{n_2}^- \geq \varepsilon_1\) will be considered.

Let \(n_3 \geq n_2\) be such that \(\text{diam} I_{n_3}^- \geq \varepsilon_1\) and \(\text{diam} I_{n_3+1}^- < \varepsilon_1\). (Everyone can find \(n_3\) because \(\text{diam} I_n^- \to 0\) for \(n \to \infty\).) Then it is easy to show that the set of elements of the space \(l_\infty\) in the form

\[v_{s_1, s_2, \ldots, s_{n_3-n_2+1}}^{1, 2, \ldots, n_3-n_2+1} = \{C, \ldots, C, \ldots, C - s_1 C_1, \ldots, C - s_{n_3-n_2+1} C_1, C, \ldots\}\]

where

\[s_i = 0, 1, \ldots, r_i := \text{En} \left[\frac{\text{diam} I_{n_2+i-1}^-}{\varepsilon_1} \right] + 1, \quad i = 1, 2, \ldots, n_3 - n_2 + 1,\]

to set up an \(\varepsilon_1\)-net. (En denotes an entire function.) One can observe that

\[\text{card}\{v_{s_1, s_2, \ldots, s_{n_3-n_2+1}}^{1, 2, \ldots, n_3-n_2+1}\} = \prod_{i=1}^{n_3-n_2+1} (r_i + 1) < \infty.\]

Hence the \(\varepsilon_1\)-net is finite and by the Hausdorff theorem \(T\) is compact.

Let us define the operator \(A\) on \(T\) in the following way:

\[Ax = y = \{b_1, b_2, \ldots, b_{n_2-1}, b_{n_2}, \ldots, b_k, \ldots\},\]
where

\[
b_n = \begin{cases}
C & \text{for } n = 1, 2, \ldots, n_2 = 1; \\
C - \sum_{j=n}^{\infty} (j + 1 - n)p_j f(h_j) & \text{for } n \geq n_2.
\end{cases}
\]

We will show that \(A \) is a function from \(T \) to \(T \). By observing that \(I_k^- \subset I^- \) it follows that \(0 < f(h_k) \leq C_1 \) for \(k \geq n_2 \). For \(j \geq k \) one obtains the inequality

\[
0 < (j + 1 - k)p_j f(h_j) \leq jp_j f(h_j) \leq C_1 j p_j.
\]

Hence

\[
C > C - \sum_{j=k}^{\infty} (j + 1 - k)p_j f(h_j) \geq C - C_1 \sum_{j=k}^{\infty} j p_j.
\]

Thus \(b_k \in I_k^- \) for \(k \geq n_2 \). Therefore \(y \in T \).

Next we will show that \(A \) is continuous. Since \(f \) is continuous on \(R \), it is uniformly continuous on \(I^- \). Hence for each \(\varepsilon_2 > 0 \) there exists \(\delta_1 > 0 \) such that the condition \(|t_1 - t_2| < \delta_1 \) implies \(|f(t_1) - f(t_2)| < \varepsilon_2 \). Consider the sequence \(\{x_m\}_{m=1}^{\infty} \), \(x_m \in T \), such that

\[
(2.2) \quad \|x_m - x^0\| \to 0; \quad \text{i.e., sup}_{n \geq 1} |h_n^m - h_n^0| \to 0, \quad \text{as } m \to \infty.
\]

From (2.2) it follows that there exists \(n_3 = N(\delta_1) \) such that

\[
\|x_m - x^0\| < \delta_1; \quad \text{i.e., sup}_{n \geq 1} |h_n^m - h_n^0| < \delta_1 \quad \text{for } m \geq n_3.
\]

Hence

\[
\forall_{m \geq n_3} \forall_{i \in N} |h_i^m - h_i^0| < \delta_1.
\]

Then for \(m \geq n_3 \)

\[
\|Ax_m - Ax^0\| = \sup_{n \geq 1} |b_n^m - b_n^0|
\]

\[
= \sup_{n \geq n_2} \left| \sum_{j=n}^{\infty} (j + 1 - n)p_j f(h_j^m) - \sum_{j=n}^{\infty} (j + 1 - n)p_j f(h_j^0) \right|,
\]

where \(b^0 = Ax^0 \) and \(b^m = Ax^m \).

Since the series \(\sum_{j=n}^{\infty} (j + 1 - n)p_j f(h_j^m) \), \(\sum_{j=n}^{\infty} (j + 1 - n)p_j f(h_j^0) \) are convergent,

\[
\|Ax_m - Ax^0\| \leq \varepsilon_2 \sum_{j=n_2}^{\infty} (j + 1 - n_2)p_j, \quad m \geq n_3.
\]

Hence \(A \) is continuous.

By the Schauder fixed point theorem [8] there exists a solution in \(T \) of the equation \(x = Ax \). Let \(z = \{d_1, d_2, \ldots, d_{n_2-1}, d_{n_2}, \ldots\} \) denote such a solution. Since \(z \in T \), it can be written as follows:

\[
z = \{C, C, \ldots, C, d_{n_2}, d_{n_2+1}, \ldots\}
\]
and

\[Az = \left\{ C, C, \ldots, C, C - \sum_{j=n_2}^{\infty} (j + 1 - n_2)p_j f(d_j), \right. \]
\[\left. C - \sum_{j=n_2+1}^{\infty} (j - n_2)p_j f(d_j), \ldots \right\}. \]

Therefore

\[(2.3) \quad d_n = C - \sum_{j=n}^{\infty} (j + 1 - n)p_j f(d_j) \quad \text{for } n \geq n_2. \]

Applying the operator \(\Delta \) to (2.3) we yield

\[\Delta d_n = \sum_{j=n}^{\infty} p_j f(d_j) \quad \text{for } n \geq n_2. \]

Hence \(\Delta^2 d_n = -p_n f(d_n) \) holds for \(n \geq n_2 \). This means that the sequence \(\{d_n\}_{n=1}^{\infty} \) fulfills the equation (E) but for \(n \geq n_2 \) only.

We now prove the existence of the solution \(\{x_n\}_{n=1}^{\infty} \) of (E) such that \(x_n = d_n \) for \(n \geq n_2 \).

One can observe that (E) can be rewritten as

\[x_n + p_n f(x_n) = -x_{n+1} + 2x_{n+1}. \]

If \(n = n_2 - 1 \) we get

\[(2.4) \quad x_{n_2-1} + p_{n_2-1} f(x_{n_2-1}) = -x_{n_2+1} + 2x_{n_2}. \]

But we demand for \(x_n \) to be equal to \(d_n \) for \(n \geq n_2 \).

From (2.4) we obtain

\[x_{n_2-1} + p_{n_2-1} f(x_{n_2-1}) = -d_{n_2+1} + 2d_{n_2}. \]

By (*) it follows that the equation

\[x + p_{n_2-1} f(x) = -d_{n_2+1} + 2d_{n_2} \]

possesses solutions. Let us denote one of them by \(x_{n_2-1} \). Analogously we can calculate \(x_{n_2-2}, x_{n_2-3}, \ldots, x_2, x_1 \) one after the other. Consequently we get the sequence which fulfills (2.4), i.e. which also fulfills (E). Moreover this sequence is identical to \(\{d_n\}_{n=1}^{\infty} \) for \(n \geq n_2 \) and it has the asymptotic behavior (AB) because \(\lim_{n \to \infty} d_n = C \). Q.E.D.

REMARK 2. One can observe that if \(f \) is bounded on \(R \) or fulfills the condition \(x f(x) > 0 \) for \(x \neq 0 \) then condition (*) is satisfied. From the proof of Theorem 2 we can deduce that (*) may be weakened as follows:

\[i_R + p_k f : R \to R \quad \text{for } k < n_2, \quad k \in N. \]

REMARK 3. If the assumptions of Theorem 2 hold then analogously an existence of a solution of the equation

\[(E_k) \quad \Delta^2 x_n + p_{n+k} f(x_{n+k}) = 0, \quad k \geq 1, \]
having the asymptotic behavior (AB) may be proved. In this case the operator A

similar to the above but with

$$b_n = C - \sum_{j=n+k}^{\infty} (j + 1 - n - k)p_j f(h_j) \text{ for } x = \{h_i\}_{i=1}^{\infty} \in T$$

should be defined.

REMARK 4. If (E) possesses a solution x such that $\lim_{n \to \infty} x_n = C$ then equation

(E) has a solution with $\lim_{n \to \infty} x_n = C_2$, where $C_2 \in (C - \varepsilon, C + \varepsilon) \subset I$.

REMARK 5. If for some C, $f(C) = 0$, then independently of the form of p,

equation (E) has a solution with (AB). It has the form $x_n = C$ for each $n \geq 1$.

Conversely, if, for each $n \geq n_2$, $x_n = C$ is the solution of (E) then $p_n f(C) = 0$ for

$n \geq n_2$. Hence $f(C) = 0$ or $p_n = 0$ for each $n \geq n_2$. For the second case ($p_n = 0$)
the condition $\sum_{j=1}^{\infty} j p_j < \infty$ obviously holds.

EXAMPLE. The special case $f(x) = x$ and $k = 1$ will be studied. In this case

equation (E_k) can be written in the following two equivalent forms:

$$(E_1) \quad \Delta^2 x_n + p_{n+1} x_{n+1} = 0, \quad x_{n+2} - q_n x_{n+1} + x_n = 0,$$

where $q_n = 2 - p_{n+1}$, $n \in N$. If $q_n < 2$, $n \in N$ and $\sum_{j=2}^{\infty} (2 - q_{j-1}) j < \infty$ then

(E_1) possesses a solution which asymptotically approaches any positive constant.

Analogously in the case $k = 2$ one obtains the equation

$$(E_2) \quad x_{n+2} - 2 q_n x_{n+1} + q_n x_n = 0,$$

where $q_n = 1/(p_{n+2} + 1)$.

If $0 < q_n < 1$ and $\sum_{j=3}^{\infty} (1/q_{j-1} - 1) j < \infty$ then (E_2) possesses a solution which
asymptotically approaches any positive constant.

REFERENCES

1. T. G. Hallam, Asymptotic behavior of the solutions of an nth order nonhomogeneous

2. ———, Asymptotic behavior of the solutions of a nonhomogeneous singular equation, J.

3. J. W. Hooker and W. T. Patula, A second order nonlinear difference equation; oscillation

4. R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential

5. W. T. Patula, Growth and oscillation properties of second order linear difference

6. ———, Growth, oscillation and comparison theorems for second order linear difference

7. J. Popenda and J. Werbowski, On the asymptotic behaviour of the solutions of difference

8. J. Schauder, Zur Theorie stetiger Abbildungen in Funktionalraumen, Math. Z. 26 (1927),
47–65.

Institute of Mathematics, Technical University of Poznań, ul. Pihtrowo
3A, 60-965 Poznań, Poland