Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the cardinality of a compact $ T\sb 1$ space

Author: Angelo Bella
Journal: Proc. Amer. Math. Soc. 99 (1987), 176-178
MSC: Primary 54A25
MathSciNet review: 866448
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper two theorems on the cardinality of a compact $ {T_1}$ space are stated. They generalize the following result: an uncountable first countable compact $ {T_1}$ space has cardinality greater than or equal to $ {2^{{\aleph _0}}}$.

References [Enhancements On Off] (What's this?)

  • [1] Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
  • [2] I. Juhász, Cardinal functions in topology, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg; Mathematical Centre Tracts, No. 34. MR 0340021
  • [3] V. I. Malyhin, On the power of first countable 𝑇₁-bicompacta, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 827–828. MR 588826

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25

Retrieve articles in all journals with MSC: 54A25

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society