Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the cardinality of a compact $ T\sb 1$ space


Author: Angelo Bella
Journal: Proc. Amer. Math. Soc. 99 (1987), 176-178
MSC: Primary 54A25
DOI: https://doi.org/10.1090/S0002-9939-1987-0866448-X
MathSciNet review: 866448
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper two theorems on the cardinality of a compact $ {T_1}$ space are stated. They generalize the following result: an uncountable first countable compact $ {T_1}$ space has cardinality greater than or equal to $ {2^{{\aleph _0}}}$.


References [Enhancements On Off] (What's this?)

  • [1] R. Engelking, General topology, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [2] I. Juhasz, Cardinal functions in topology, Math. Centre Tracts 34, Math. Centrum, Amsterdam, 1971. MR 0340021 (49:4778)
  • [3] V. I. Malyhin, On the power of first countable $ {T_1}$-bicompacta, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, 1978, pp. 827-828. MR 588826 (82g:54009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25

Retrieve articles in all journals with MSC: 54A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866448-X
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society