A NOTE ON THE EXISTENCE OF G-MAPS BETWEEN SPHERES

STEFAN WANER

Abstract. Let \(G \) be a finite group, and let \(V \) and \(W \) be finite-dimensional real orthogonal \(G \)-modules with \(V \supset W \), and with unit spheres \(S(V) \) and \(S(W) \) respectively. The purpose of this note is to give necessary sufficient conditions for the existence of a \(G \)-map \(f: S(V) \to S(W) \) in terms of the Burnside ring of \(G \) and its relationship with \(V \) and \(W \). Note that if \(W \) has a nonzero fixed point, such a \(G \)-map always exists, so for nontriviality, we assume this not the case.

Existence of \(G \)-maps. Let \(V \) be a finite-dimensional orthogonal \(G \)-module and let \(W \subset V \) be an invariant sub-\(G \)-module. Denote the unit spheres of \(V \) and \(W \) by \(S(V) \) and \(S(W) \) respectively. Here we obtain an algebraic criterion for the existence of a \(G \)-map \(f: S(V) \to S(W) \). Thus, for nontriviality, we assume \(W^G = \{0\} \).

The case \(V = W \) has been studied in [3], and we first recall pertinent facts. Let \(A(G) \) be the Burnside ring of \(G \). Thus, \(A(G) \) is the Grothendieck group of equivalence classes of finite \(G \)-sets with addition given by disjoint union. Its elements are thus represented by virtual \(G \)-sets, and \(A(G) \) is additively the free abelian group with basis \(\{G/H\} \), where \(H \) runs through representatives of conjugacy classes of subgroups of \(G \). The multiplicative structure is given by cartesian product. One has a natural isomorphism

\[\Phi: A(G) \cong \omega, \]

where \(\omega \) denotes the zeroth equivariant stable stem. (See, for example, [2]. Roughly, \(\Phi \) is defined via the collapse map associated with a suitable embedding of a finite \(G \)-set in a large sphere \(S(V) \).) Denote by \(\phi(G) \) the set of conjugacy classes of subgroups of \(G \), and let

\[d: A(G) \to \prod_{(H) \in \phi(G)} \mathbb{Z} = C \]

denote its integral closure. Thus \(d[s - t]_{(H)} = |s|^H - |t|^H \) for a virtual \(G \)-set \(s - t \).

It is well known that \(d \) is a monomorphism [1]. Denote by \(\Lambda(W) \) the monoid of (free) \(G \)-homotopy classes of \(G \)-maps \(S(W) \to S(W) \), and let \(\nu(W): \Lambda(W) \to A(G) \) denote the natural monoid homomorphisms obtained by suspending and applying \(\Phi^{-1} \). The results of [3] give a characterization of the image of \(\nu(W) \), which we now state. (The constructions there of \(G \)-maps \(S(W) \to S(W) \) representing suitable elements in \(A(G) \) are given in terms of appropriate tangent \(G \)-vector fields on \(S(W) \).)

Received by the editors September 6, 1985 and, in revised form, December 19, 1985.
1980 Mathematics Subject Classification (1985 Revision). Primary 54H15.

©1987 American Mathematical Society
0002-9939/87 $1.00 + $.25 per page
Proposition. An element \(a = [s - t] \in A(G) \) is in the image of \(\nu(W) \) iff the following conditions hold on \(s - t \).

(i) Recalling that \(W^G = \{0\} \), one requires that \(s - t \) be the form \(1 + \sum_i n_i G/H_i \), where the \(H_i \) are isotropy subgroups of points in \(W - \{0\} \).

(ii) If \(H \) is an isotropy subgroup in \(W - \{0\} \) and \(\dim W^H = 1 \), then

\[
\deg(a)_{H} = \begin{cases}
1 \text{ or } -1 & \text{if } NH \neq H; \\
0, 1 \text{ or } -1 & \text{if } NH = H.
\end{cases}
\]

One now has the following

Theorem. With \(V \) and \(W \) as above, there exists a \(G \)-map \(S(V) \to S(W) \) iff:

(a) For each \(H \subset G \), \(\dim V^H > 1 \) implies \(\dim W^H > 1 \).

(b) There exists \(a \in A(G) \) of the form \(1 + \sum_i n_i G/H_i \) with each \(H_i \) an isotropy subgroup of \(W \) such that

(i) \(\deg(a)_{H} = 0 \) whenever \(\dim V^H > \dim W^H \);

(ii) if \(\dim V^H = 1 \), then

\[
\deg(a)_{H} = \begin{cases}
1 \text{ or } -1 & \text{if } NH \neq H; \\
0, 1 \text{ or } -1 & \text{if } NH = H.
\end{cases}
\]

(\text{Note that (b) is equivalent to the following assertion:}

(b') There exists an element \(a \in \text{Im } \nu(W) \) with \(\deg(a)_{H} = 0 \) whenever \(\dim V^H > \dim W^H \).)

Proof. We first show that the conditions are necessary. Condition (a) is clearly necessary, while, given any \(G \)-map \(f: S(V) \to S(W) \), composing with the inclusion \(i: S(W) \to S(V) \) gives a \(G \)-map \(g \) on \(S(W) \) whose fixed set degrees are zero whenever \(\dim V^H > \dim W^H \), and we take \(a \) as \(\nu(W)(g) \).

Conversely, assume that conditions (a) and (b) hold. Choose \(a \in \text{Im } \nu(W) \) satisfying condition (b), and choose a \(G \)-map \(\rho: S(W) \to S(W) \) with \(\nu(W)(\rho) = a \). By condition (a), if \(H \subset G \), is such that \(\dim V^H > 1 \), then \(\dim W^H = 1 \) as well. This, together with condition (a) itself, permits one to define a \(G \)-map \(\lambda_0 \) from the zero skeleton of \(S(V) \) to \(S(W) \), with respect to some \(G \)-CW decomposition of \(S(V) \). Thus assume that we have constructed a \(G \)-map

\[
\lambda_n: S(V)^n \to S(W),
\]

where \(S(V)^n \) denotes the \(n \)-skeleton of \(S(V) \). The obstruction to extending \(\lambda_n \) over a typical \((n + 1) \times G \)-cell of the form \(G/H \times D^{n+1} \) defines an element \(x \) of \(\pi_n(S(W)^H) \). We consider two cases. If \(n < \dim W^H - 1 \), then the obstruction vanishes for dimensional reasons, and one may extend over the given \(G \)-cell. If \(n \geq \dim W^H - 1 \), then one has \(\dim V^H > \dim W^H \). Let \(\lambda_n = \rho \circ \lambda_n \). Then, since now \(\deg(\rho^H) = 0 \), and since the obstruction to extending \(\lambda_n \) over the cell is given by \(\rho^H(x) = 0 \), the obstruction now vanishes. Continuing this process inductively now gives the desired result. \(\square \)

Remarks. Conditions (a) and (b) always hold in the following situation. Let \(G \) be any nonsolvable group. Then one has, by [1], a nontrivial idempotent \(e \) in \(A(G) \), and we may assume that \(\deg(e)_{\{1\}} = 0 \), where \(\{1\} \) denotes the trivial subgroup of \(G \).
If H is a minimal subgroup for which $d(e)_H = 1$, then, if $\mathcal{F}: A(G) \to A(H)$ denotes the forgetful homomorphism (which assigns to any virtual G-set the associated H-set via restriction), one has, in $A(H)$, $d(\mathcal{F}(e))_K = 0$ for all proper subgroups $K \subset H$, while $d(\mathcal{F}(e))_H = 1$. Let R be the reduced regular representation of H, let $W = R \oplus R$, and let $V = W \oplus W$. Then $\nu(W)$ contains all H-sets of the form $1 + \sum_i H/K_i$ with $K_i \subset H$ proper, whence it contains $\mathcal{F}(e)$. It follows from the theorem that there is an H-map $S(V) \to S(W)$. This in turn gives a G-map $S(iV) \to S(iW)$, where i denotes induction.

The existence of such G-maps is by no means restricted to nonsolvable, or even to nonabelian groups; let $G = \mathbb{Z}/p \times \mathbb{Z}/q$, with p and q distinct primes. Choose integers m and n with $mp + nq = 1$, and let $V = \rho_p \oplus \rho_q \oplus \rho_{pq}$, $W = \rho_p \oplus \rho_q$, where ρ_p is any one-dimensional irreducible complex \mathbb{Z}/p-module, regarded as a $(\mathbb{Z}/p \times \mathbb{Z}/q \equiv \mathbb{Z}/pq)$-module via projection, and similarly for ρ_q and ρ_{pq}. Then $S(V)$ and $S(W)$ possess isomorphic fixed-sets by any nontrivial subgroup, and we may take $a = 1 - m\mathbb{Z}/p - n\mathbb{Z}/q$ as our element in $A(\mathbb{Z}/pq)$.

We state an easy consequence of the theorem.

Corollary. Let $W \subset V$ be any G-modules with $V^G = W^G$, and assume that if $H \subset G$ and $V^H \neq V^G$, then $W^H \neq W^G$. Denote the orthogonal complement of V^G by $V(G)$, and similarly for $W(G)$. Then there exists a G-map $f: S(V) \to S(W)$ with fixed-set degree prime to $|G|$ iff (b) above holds with V and W there replaced by $V(G)$ and $W(G)$ respectively. (The condition on fixed sets by subgroups may be thought of as a mild “gap hypothesis,” and guarantees that (a) holds in this context.)

Proof. Note that if $V^G = W^G = 0$, then this is just a restatement of the theorem. Thus assume $\dim V^G \geq 1$. Conditions (a) and (b) are certainly sufficient; one may suspend any G-map $S^n \to S^n$, where $n = \dim V^G - 1$, with the unreduced suspension of a G-map $S(V(G)) \to S(W(G))$ to obtain a G-map of the desired degree. Conversely, given a G-map $f: S(V) \to S(W)$ with fixed-set degree prime to $|G|$, one has, for suitable m, $m \deg(f^G) \equiv 1 \mod |G|$ (and where we may take $m = \pm 1$ if $\dim V^G = 1$). This in turn gives an element $a \in A(G)$ satisfying condition (b) of the hypothesis of the theorem. Indeed, one obtains, by classical general position arguments, an element $a \in A(G)$ which represents the G-map $mf \circ$ (inclusion of $S(W)$ in $S(V)$). The crucial point here is that, since $V^G \neq 0$, general position arguments work, since we have a stationary basepoint to map into. Observing that any representing virtual G-set has orbit-types those of W, and that if $H \neq G$ is any isotropy subgroup occurring in W, one has $\dim W^H \neq 1$, one now sees that $a \in \nu(W(G))$ and satisfies the conditions (a) and (b) of the theorem.

References

Department of Mathematics, Hofstra University, Hempstead, New York 11550