Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite generation of certain subrings


Author: John Fogarty
Journal: Proc. Amer. Math. Soc. 99 (1987), 201-204
MSC: Primary 13E15; Secondary 14A15
DOI: https://doi.org/10.1090/S0002-9939-1987-0866454-5
MathSciNet review: 866454
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A more geometric approach can be used to prove finite generation of certain subrings, notably invariants under reductive group actions.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Eakin, The converse to a well known theorem on noetherian rings, Math. Ann. 177 (1968), 278. MR 0225767 (37:1360)
  • [2] J. Fogarty, Kahler differentials and Hilbert's fourteenth problem for finite groups, Amer. J. Math. 102 (1980), 1159. MR 595009 (82c:13006)
  • [3] -, Geometric quotients are algebraic schemes, Adv. in Math. 48 (1983), 106-171. MR 700982 (84m:14056)
  • [4] A. Grothendieck, and J. Dieudonné, EGA, Publ. Math. Inst. Hautes Études Sci., no. 24.
  • [5] D. Mumford, Hilbert's fourteenth problem, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976, p. 431. MR 0435076 (55:8038)
  • [6] D. Mumford and J. Fogarty, Geometric invariant theory, 2nd ed., Springer, 1982. MR 719371 (86a:14006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13E15, 14A15

Retrieve articles in all journals with MSC: 13E15, 14A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0866454-5
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society