Finite generation of certain subrings

Author:
John Fogarty

Journal:
Proc. Amer. Math. Soc. **99** (1987), 201-204

MSC:
Primary 13E15; Secondary 14A15

DOI:
https://doi.org/10.1090/S0002-9939-1987-0866454-5

MathSciNet review:
866454

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A more geometric approach can be used to prove finite generation of certain subrings, notably invariants under reductive group actions.

**[1]**P. M. Eakin,*The converse to a well known theorem on noetherian rings*, Math. Ann.**177**(1968), 278. MR**0225767 (37:1360)****[2]**J. Fogarty,*Kahler differentials and Hilbert's fourteenth problem for finite groups*, Amer. J. Math.**102**(1980), 1159. MR**595009 (82c:13006)****[3]**-,*Geometric quotients are algebraic schemes*, Adv. in Math.**48**(1983), 106-171. MR**700982 (84m:14056)****[4]**A. Grothendieck, and J. Dieudonné, EGA, Publ. Math. Inst. Hautes Études Sci., no. 24.**[5]**D. Mumford,*Hilbert's fourteenth problem*, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976, p. 431. MR**0435076 (55:8038)****[6]**D. Mumford and J. Fogarty,*Geometric invariant theory*, 2nd ed., Springer, 1982. MR**719371 (86a:14006)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13E15,
14A15

Retrieve articles in all journals with MSC: 13E15, 14A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0866454-5

Article copyright:
© Copyright 1987
American Mathematical Society