Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Orbits of creative subspaces

Author: R. G. Downey
Journal: Proc. Amer. Math. Soc. 99 (1987), 163-170
MSC: Primary 03D45
MathSciNet review: 866455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the creative r.e. subspaces fall into infinitely many distinct elementary classes. The techniques also extend to give some new results about orbits of creative subspaces and subfields in $ {L^*}({V_\infty })$ and $ {L^*}({F_\infty })$ respectively. Finally within each of these new elementary classes we construct infinitely many further orbits in the automorphism group of $ L({V_\infty })$.

References [Enhancements On Off] (What's this?)

  • [AD] C. J. Ash and R. G. Downey, Decidable subspaces and recursively enumerable subspaces, J. Symbolic Logic 49 (1984), 1137-1145. MR 771782 (87k:03045)
  • [Ba] J. Baldwin, First order theories of abstract dependence relations, Ann. Pure Appl. Logic 26 (1984), 215-243. MR 747685 (85g:03056)
  • [Do] R. G. Downey, Bases of supermaximal subspaces and Steinitz systems. II, Z. Math. Logik Grundlagen Math. (to appear). MR 847235 (87m:03064)
  • [DH] R. G. Downey and G. R. Hird, Automorphisms of supermaximal subspaces, J. Symbolic Logic 50 (1985), 1-9. MR 780519 (86k:03036)
  • [Gu] D. Guichard, Automorphisms of substructure lattices in effective algebra, Ann. Pure Appl. Logic 25 (1983), 47-58. MR 722168 (85e:03104)
  • [KR] I. Kalantari and A. Retzlaff, Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces, J. Symbolic Logic 42 (1977), 481-491. MR 0505385 (58:21539)
  • [MN1] G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann. Math. Logic 11 (1977), 147-171. MR 0446936 (56:5253)
  • [MN2] -, Recursion theory on fields and abstract dependence, J. Algebra 65 (1980), 36-59. MR 578794 (81k:03041)
  • [My] J. R. Myhill, Creative sets, Z. Math. Logik Grundlagen Math. 1 (1955), 97-108. MR 0071379 (17:118g)
  • [NR1] A. Nerode andd J. B. Remmel, Recursion theory of matroids, Patras Logic Symposion (Ed., G. Metakides), North-Holland, Amsterdam, 1982, pp. 41-65. MR 694252 (86b:03055a)
  • [NR2] -, Recursion theory on matroids. II, Southeast Asian Conference on Logic (Eds., C. T. Chong and M. J. Wicks), North-Holland, Amsterdam, 1983, pp. 133-184. MR 723328 (84i:03004)
  • [NR3] -, A survey of the lattices of r.e. substructures, Recursion Theory (Eds., A. Nerode and R. Shore), Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, R.I., 1985, pp. 323-375. MR 791067 (87b:03097)
  • [So] R. I. Soare, Recursively enumerable sets and degrees, Springer Verlag Omega series (to appear). MR 882921 (88m:03003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03D45

Retrieve articles in all journals with MSC: 03D45

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society