ADDITIVE GROUPS OF T-RINGS
GEORGE V. WILSON

ABSTRACT. We build on a result of Bowshell and Schultz to give a complete characterization of the groups which occur as the additive groups of T-rings. This answers a question of Feigelstock.

In this paper, all groups are abelian. We write R^+ for the additive group of a ring R, $t(G)$ for the torsion subgroup of a group G, and G_p for the p-primary component of G.

Fuchs [Fl, Problem 45] posed the problem of classifying those rings R with the property that $R \cong \text{End}_\mathbb{Z}(R^+)$. Bowshell and Schultz [BS] found one class of rings with this property that they called T-rings. A unital ring R is a T-ring if the map $m: R \otimes \mathbb{Z} R \to R$ induced by multiplication $a \otimes b \to ab$ is an isomorphism. [BS] characterized T-rings in terms of their additive groups. In order to state their result, we recall some basic facts about torsion-free groups. A torsion-free group has rank one if and only if it is isomorphic to a subgroup of the rational numbers. Rank one groups are completely classified by an invariant called type. A rank one group is the additive group of a unital ring if and only if its type is idempotent under a natural product. Readers unfamiliar with this material are referred to [F2, §85] for a thorough treatment.

We are now in a position to state the above-mentioned result.

PROPOSITION 1 [BS]. The following are equivalent for a unital ring R:
(A) R is a T-ring,
(B) (1) the quotient $R^+/t(R^+)$ is a rank one group of idempotent type and
(2) if R^+_p is nonzero, it is cyclic and $R^+/t(R^+)$ is p-divisible.

From this, one can easily see that a torsion group is the additive group of a T-ring if and only if it is cyclic; see [BS, 1.4]. This led Feigelstock to ask if the conditions in B above are enough to guarantee that a nontorsion group is the additive group of a T-ring [Fg, Question 4.7.30]. By Proposition 1, it suffices to determine if such a group is the additive group of some unital ring. In fact, these conditions are not sufficient and we now determine the minor additional restriction needed to give a T-ring.

PROPOSITION 2. Let G be an abelian group which satisfies the conditions in (B) above. Then either $G \cong t(G) \oplus G/t(G)$ or else $\bigoplus G_p \leq G \leq \prod G_p$.

PROOF. Since we assume that each nonzero p-component G_p is cyclic, the G_p are pure and bounded, hence they are summands [F2, 27.5]. Let $\pi_p: G \to G_p$ be a projection map and let $\alpha = \prod \pi_p: G \to \prod G_p$ be the product of these maps. Suppose that there is even one element x with infinitely many of the $\pi_p x \neq 0$. In

Received by the editors September 30, 1985 and, in revised form, December 27, 1985.

©1987 American Mathematical Society
0002-9939/87 $1.00 + .25 per page

219
this case, we claim that \(\alpha \) is an injection. Let \(q: G \to G/t(G) \) be the quotient map, \(q(x) \neq 0 \). Take any \(g \in G \). If \(g \in t(G) \), then of course \(\alpha(g) \neq 0 \). Next suppose \(g \notin t(G) \). Since \(G/t(G) \) is assumed to be a rank one group, \(q(g) \) is a rational multiple of \(q(x) \), i.e. \(mq(x) = nq(g) \) for some integers \(m \) and \(n \). This implies that \(mx = ng + t \) for some \(t \in t(G) \). Since \(x \) has infinitely many nonzero projections \(\pi_p x \), so does \(mx \). Since \(t \) has only finitely many nonzero projections, \(ng \) must have infinitely many and so \(g \) does also. Thus, \(ag \neq 0 \) and \(\alpha \) is an injection.

Next suppose that there is no element with infinitely many projections. Then every element \(g \in G \) can be written \(g = k + t \), where \(k \in \ker \alpha \) and \(t \in t(G) \). Since \(\ker \alpha \cap t(G) = 0 \), \(G = \ker \alpha \oplus t(G) \).

We can now complete the picture of the additive groups of \(T \)-rings.

Proposition 3. A group \(G \) is the additive group of a \(T \)-ring if and only if

1. it satisfies the conditions of \((B) \) in Proposition 1 and
2. there is some \(g \in G \) such that for every prime \(p \), \(\pi_p g \) generates \(G_p \).

Proof. Say \(G \approx R^+ \) for a \(T \)-ring \(R \). Proposition 1 shows that \((B) \) holds. It is easy to see that for \(1 \in R \), \(\pi_1 \) generates \(G_p \) for every \(p \).

Conversely, assume that \(G \) satisfies \((1) \) and \((2) \). By Proposition 2, \(G \approx t(G) \oplus G/t(G) \) or \(\bigoplus G_p \leq G \leq \prod G_p \). Suppose that \(G \approx t(G) \oplus X \), where \(X \) is a rank one, torsion-free group of idempotent type. Write the \(g \) given in condition \((2) \) as \(g = t + x \), \(t \in (G) \), \(x \in X \). Since \(\pi_p(x) = 0 \) for all \(p \) and \(\pi_p(t) \neq 0 \) for only finitely many \(p \), \(\pi_p(g) \) is nonzero for only finitely many \(p \). Since \(\pi_p(g) \) generates each \(G_p \), only finitely many \(G_p \) are nonzero. Since each \(G_p \) is cyclic, \(t(G) \) is cyclic and carries a unital ring structure. Since \(X \) is rank one of idempotent type, it also has unital ring structure. Clearly, \(G \approx t(G) \oplus X \) carries the product ring structure.

Suppose \(\bigoplus G_p \leq G \leq \prod G_p \). Let \(q: G \to G/t(G) \) be the quotient map. Choose \(g \in G \) such that for all \(p \), \(\pi_p g \) generates \(G_p \) and so that \(q(g) \) has an idempotent height sequence. Give each \(G_p \) the ring structure that makes \(\pi_p g \) the unity of \(G_p \) and give \(\prod G_p \) the product ring structure. We claim that \(G \) is a subring. Clearly, if \(t \in \bigoplus G_p \) and \(x \) is any element of \(\prod G_p \), then \(xt \in \bigoplus G_p \leq G \), so we must show that the product of nontorsion elements of \(G \) is again in \(G \). Take \(x, y \in G \) and write \(jx = mg + t \), \(ky = ng + s \) with \(j, k, m, n \in \mathbb{Z} \), \(t, s \in t(G) \). Since \(q(g) \) has idempotent type and is divisible by \(j \) and \(k \), it is divisible by \(jk \). Choose \(z \in G \) with \(jkz = mng + u \), \(u \in t(G) \). With this choice, \(jk(z - xy) \in t(G) \), so \(v = z - xy \in t(G) \) and \(xy = z - v \in G \). We see that \(G \) is a unital subring of \(\prod G_p \) and so is a \(T \)-ring.

It is fairly easy to see that any group satisfying the conditions of \((B) \) has a ring structure which makes the multiplication map \(G \circ G \to G \) an isomorphism. The extra condition in Proposition 3 is simply to insure that this is a unital ring structure.

References

Department of Mathematics, University of Georgia, Athens, Georgia 30602