Approximate identities and paracompactness

Authors:
R. A. Fontenot and R. F. Wheeler

Journal:
Proc. Amer. Math. Soc. **99** (1987), 232-236

MSC:
Primary 46J10; Secondary 46E25, 54D18

MathSciNet review:
870777

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote a locally compact Hausdorff space and the algebra of continuous complex-valued functions on . The main result of this paper is that is paracompact if and only if , the subalgebra of consisting of functions which vanish at infinity, has an approximate identity which is a relatively compact subset of for the weak topology of the pairing of with its strict topology dual.

**[1]**R. Creighton Buck,*Bounded continuous functions on a locally compact space*, Michigan Math. J.**5**(1958), 95–104. MR**0105611****[2]**H. S. Collins,*Strict, weighted, and mixed topologies and applications*, Advances in Math.**19**(1976), no. 2, 207–237. MR**0394149****[3]**H. S. Collins and J. R. Dorroh,*Remarks on certain function spaces*, Math. Ann.**176**(1968), 157–168. MR**0222644****[4]**H. S. Collins and R. A. Fontenot,*Approximate identities and the strict topology*, Pacific J. Math.**43**(1972), 63–79. MR**0313824****[5]**John B. Conway,*The strict topology and compactness in the space of measures. II*, Trans. Amer. Math. Soc.**126**(1967), 474–486. MR**0206685**, 10.1090/S0002-9947-1967-0206685-2**[6]**James Dugundji,*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606****[7]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162****[8]**A. Grothendieck,*Critères de compacité dans les espaces fonctionnels généraux*, Amer. J. Math.**74**(1952), 168–186 (French). MR**0047313****[9 J]**J. D. Pryce,*A device of R. J. Whitley’s applied to pointwise compactness in spaces of continuous functions*, Proc. London Math. Soc. (3)**23**(1971), 532–546. MR**0296670****[10]**I. Z. Ruzsa, personal communication, 1974.**[11]**F. Dennis Sentilles,*Bounded continuous functions on a completely regular space*, Trans. Amer. Math. Soc.**168**(1972), 311–336. MR**0295065**, 10.1090/S0002-9947-1972-0295065-1**[12]**Donald Curtis Taylor,*A general Phillips theorem for 𝐶^{*}-algebras and some applications*, Pacific J. Math.**40**(1972), 477–488. MR**0308799****[13]**Robert F. Wheeler,*Well-behaved and totally bounded approximate identities for 𝐶₀(𝑋)*, Pacific J. Math.**65**(1976), no. 1, 261–269. MR**0458150****[14]**Robert F. Wheeler,*A survey of Baire measures and strict topologies*, Exposition. Math.**1**(1983), no. 2, 97–190. MR**710569**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46J10,
46E25,
54D18

Retrieve articles in all journals with MSC: 46J10, 46E25, 54D18

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1987-0870777-3

Keywords:
Approximate identity,
paracompact,
weakly compact

Article copyright:
© Copyright 1987
American Mathematical Society