Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Radon's problem for some surfaces in $ {\bf R}\sp n$


Author: A. M. Cormack
Journal: Proc. Amer. Math. Soc. 99 (1987), 305-312
MSC: Primary 44A15; Secondary 44A05, 45A05, 92A07
DOI: https://doi.org/10.1090/S0002-9939-1987-0870790-6
MathSciNet review: 870790
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Radon's problem for a family of curves in $ {R^2}$ has been generalized to a family of $ (n - 1)$-dimensional surfaces in $ {R^n}$. The problem is posed as a set of integral equations. Solutions to these equations are given for paraboloids and cardioids, and for these cases the null spaces and consistency conditions have been found.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Cormack, Proc. Amer. Math. Soc. 83 (1981), 325-330. MR 624923 (83b:44001)
  • [2] -, Proc. Amer. Math. Soc. 86 (1982), 293-297. MR 667292 (83j:44002)
  • [3] -, SIAM-AMS Proceedings, vol. 14, Amer. Math. Soc., Providence, R.I., 1984, pp. 33-39.
  • [4] A. M. Cormack and E. T. Quinto, Trans. Amer. Math. Soc. 260 (1980), 575-581. MR 574800 (81i:44001)
  • [5] S. R. Deans, The Radon transform and some of its applications, Wiley, New York, 1983. MR 709591 (86a:44003)
  • [6] A. Erdelyi et al., Higher transcendental functions, vol. 2, McGraw-Hill, New York, 1953.
  • [7] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, Academic Press, New York, 1965.
  • [8] D. Ludwig, Comm. Pure Appl. Math. 69 (1966), 49-81. MR 0190652 (32:8064)
  • [9] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, New York, 1966. MR 0232968 (38:1291)
  • [10] A. Papoulis, J. Opt. Soc. Amer. 57 (1967), 208. MR 0209776 (35:672)
  • [11] E. T. Quinto, private communication.
  • [12] I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972.
  • [13] J. Wimp, Proc. Glasgow Math. Assoc. 7 (1965), 42-44. MR 0177138 (31:1402)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A15, 44A05, 45A05, 92A07

Retrieve articles in all journals with MSC: 44A15, 44A05, 45A05, 92A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0870790-6
Keywords: Radon transform, integral equations
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society