The mean curvature of a set of finite perimeter
Authors:
Elisabetta Barozzi, Eduardo Gonzalez and Italo Tamanini
Journal:
Proc. Amer. Math. Soc. 99 (1987), 313-316
MSC:
Primary 49F22; Secondary 49F20
DOI:
https://doi.org/10.1090/S0002-9939-1987-0870791-8
MathSciNet review:
870791
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that an arbitrary set of finite perimeter in minimizes some prescribed mean curvature functional given by an
function on
.
- [1] E. De Giorgi, F. Colombini, and L. C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Editrice Tecnico Scientifica, Pisa, 1972.
- [2] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, Mass., 1984. MR 775682 (87a:58041)
- [3]
U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in
, Arch. Rational Mech. Anal. 55 (1974), 357-382. MR 0355766 (50:8240)
- [4]
-, Frontiere orientate di curvatura media assegnata in
, Rend. Sem. Mat. Univ. Padova 53 (1975), 37-52. MR 0417905 (54:5953)
- [5] U. Massari and M. Miranda, Minimal surfaces of codimension one, North-Holland, Amsterdam, 1984. MR 795963 (87f:49058)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49F22, 49F20
Retrieve articles in all journals with MSC: 49F22, 49F20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1987-0870791-8
Article copyright:
© Copyright 1987
American Mathematical Society